第13周任务3(定义抽象基类Shape,由它派生出3个派生类,Circle(圆形)、Rectangle(矩形)、Triangle(三角形))

/* (程序头部注释开始)
* 程序的版权和版本声明部分
* Copyright (c) 2011, 烟台大学计算机学院学生 
* All rights reserved.
* 文件名称:                              
* 作    者:   臧鹏               
* 完成日期:   2012   年  5 月  15   日
* 版 本 号:          

* 对任务及求解方法的描述部分
* 输入描述: 
* 问题描述:定义抽象基类Shape,由它派生出3个派生类,Circle(圆形)、Rectangle(矩形)、Triangle(三角形)。用如下的mian()函数,求出定义的

几个几何体的面积和。

* 程序输出: 
* 程序头部的注释结束
*/


#include <iostream>
using namespace std;
//定义抽象基类Shape
class Shape
{
public:
	virtual double area() const =0;        //纯虚函数
};

//定义Circle类
class Circle:public Shape
{
public:
	Circle(double r):radius(r){}     //结构函数
	virtual double area() const 
	{
		return 3.14159*radius*radius;
	}   //定义虚函数
protected:
	double radius;               //半径
};

//定义Rectangle类
class Rectangle:public Shape
{
public:
	Rectangle(double w,double h):width(w),height(h){}     //结构函数
	virtual double area() const 
	{
		return width*height;
	}              //定义虚函数
protected:
	double width,height;    //宽与高
};

class Triangle:public Shape
{
public:
	Triangle(double w,double h):width(w),height(h){}    //结构函数
	virtual double area() const 
	{
		return 0.5*width*height;
	}          //定义虚函数
protected:
	double width,height;    //宽与高
};

int main()
{
	Circle c1(12.6),c2(4.9);             //建立Circle类对象c1,c2,参数为圆半径
	Rectangle r1(4.5,8.4),r2(5.0,2.5);    //建立Rectangle类对象r1,r2,参数为矩形长、宽
	Triangle t1(4.5,8.4),t2(3.4,2.8);     //建立Triangle类对象t1,t2,参数为三角形底边长与高
	Shape *pt[6]={&c1,&c2,&r1,&r2,&t1,&t2};  
	//定义基类指针数组pt,使它每一个元素指向一个派生类对象
	double areas=0.0;        //areas为总面积
	for(int i=0;i<6;i++)
	{
		areas=areas+pt[i]->area();
	}
	cout<<"totol of all areas="<<areas<<endl;   //输出总面积
	system("pause");
	return 0;
}


经验积累:

从main()函数中可以看出,要用指向Shape的指针pt[i]调用各种形状对应的area()函数,也就是各个派生类的函数。,在Shape中,将area()处理为虚函数。把Shape作基类,将其处理成抽象类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值