最大不能表示的数

原创 2015年07月07日 16:52:16
最大不能表示的数

1. 对于两个数A,B,如果A,B互质,那么Ax+By (x>=0 && y>=0) 最大的不能表示的数为AB-A-B,且不能表示数的个数为:(A-1)(B-1)/2

2. 对于3个数:
定理一:
设a,b,c为正整数,(a,b,c)=1,x,y,z为非负整数,ax+by+cz所不能表出的最大整数为M,那么当 c > ab/(a,b)^2 - a/(a,b) - b/(a,b) 时,M = ab/(a,b) + c(a,b) - a - b - c;

定理二:
设a,b,c为正整数,(a,b,c)=1,x,y,z为非负整数,ax+by+cz所不能表出的最大整数为M,N = ab/(a,b) + c(a,b) - a - b - c,则:
(1) M <= N
(2) M == N 的充要条件是a1*u + b1*v可以表示出c,其中(a,b) = d,a = a1*d,b = b1*d,u,v为非负整数。
实际上定理二包含定理一。

详细可以参考:http://blog.csdn.net/acdreamers/article/details/18504181
版权声明:by whai

相关文章推荐

关于ax+by+cz的最大不可表数

我们知道,对于两个数A,B,如果有A,B互质,那么()最大的不能表示的数为AB-A-B,且不能表示数的个数为:                   那么,如果把它推广到三个数呢? 定理一:设为正整...

Usaco 4.1.1 Beef McNuggets——当Gcd(p,q)=1时,最大无法表示成px+qy(x,y>=0)的数是pq-p-q

有p,q两个正整数且gcd(p,q)=1那么最大的无法用px+qy(x,y>=0)的正整数是p×q-p-q

探讨int和unsigned能表示的最大的数和最小的数

一个 int 占4个字节,就是32个比特位,所以能表示的范围为-2^31~+2^31-1 2,147,483,647。 若是unsigned int,能表示的范围是0 ~ +2^32-1 4,294...
  • ajioy
  • ajioy
  • 2012-03-10 12:49
  • 10143

HDU 2662 Coin && HDU 1792 A New Change Problem (互质数最大不能生成数)

HDU 2662 Coin && HDU 1792 A New Change Problem (互质数最大不能生成数)

C/C++中各种类型int、long、double、char表示范围(最大最小值)

[cpp] view plaincopy #include   #include   #include    using namespace std; &...

修改XP最大IIS数.zip

  • 2014-01-22 10:16
  • 2.76MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)