Logistic回归和梯度上升算法

本文介绍了Logistic回归的基本原理,详细讲解了Sigmoid函数及其在分类问题中的应用。同时,深入探讨了梯度上升算法,包括梯度的概念和算法的迭代过程。重点解析了目标函数和梯度求解的关键点,并通过实验数据和代码展示了Logistic回归的实际应用和结果。
摘要由CSDN通过智能技术生成

一. Logistic回归原理

Logistic回归是一种广义线性回归,常用的分类器函数是Sigmoid函数,其公式如下:

σ(z)=11+ez

其中, z 可由下面公式得出:
z=w0x0+w1x1+w2x2++wnxn

如果采用向量的写法,上面的公式可以写成:
z=wTx

我们的主要任务是找到最佳参数 w 使得分类器尽可能准确。

二. 梯度上升算法

1. 梯度

函数 f(x,y) 的梯度的公式如下:

f(x,y)=f(x,y)xf(x,y)y

2. 梯度上升算法的原理

梯度上升算法的迭代公式如下:

w=w+αwf(w)

上面的公式一直被迭代执行,直到符合某个条件为止。

三. 关键点

1. 目标函数是啥?

我们考虑二分类问题,其中的包含的类别为类别1和类别0。
可以得到预测函数,其公式如下:

hw(x)=σ(wTx)=11+ewTx

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值