一. Logistic回归原理
Logistic回归是一种广义线性回归,常用的分类器函数是Sigmoid函数,其公式如下:
σ(z)=11+e−z
其中, z 可由下面公式得出:
如果采用向量的写法,上面的公式可以写成:
z=wTx
我们的主要任务是找到最佳参数 w 使得分类器尽可能准确。
二. 梯度上升算法
1. 梯度
函数
∇f(x,y)=⎡⎣⎢⎢⎢∂f(x,y)∂x∂f(x,y)∂y⎤⎦⎥⎥⎥
2. 梯度上升算法的原理
梯度上升算法的迭代公式如下:
w=w+α∇wf(w)
上面的公式一直被迭代执行,直到符合某个条件为止。
三. 关键点
1. 目标函数是啥?
我们考虑二分类问题,其中的包含的类别为类别1和类别0。
可以得到预测函数,其公式如下:
hw(x)=σ(wTx)=11+e−wTx