数论:p , q互质 , 则最大不能表示的数为:pq - p - q

本文探讨了对于任意互质的正整数p和q,找出最大不能表示为px+qy形式的正整数。通过数学推导证明了该最大数为pq-q-p,并详细阐述了其必要性和充分性的证明过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于任意正整数p,q,且gcd(q,p)=1,则最大无法表示成px+qy(x>=0,y>=0)的数是pq-q-p(对于n>pq-q-p,都可以表示成px+qy;而pq-q-p,就无法表示成px+qy)。
x>=0,y>=0很重要。
1.必要性
假设可以表示为pq-q-p
那么
px+qy=pq-q-p
p(x+1)+q(y+1)=pq
两边同时MOD p
得到: 0+q(y+1)%p=0
因为 gcd(p,q)=1
所以 y+1=kp k >= 1
同理 x+1=mq
且k,m为正整数

两边同时除以pq
(x+1)/q+(y+1)/p=1
k+m=1
y+1=kp
x+1=(1-k)q 这里推出 k < 1, 与前面矛盾
但是x,y>=0故pq-q-p,就无法表示成px+qy

2.充分性
(p-1)(q-1)=pq-p-q+1
对于n>pq-q-p即n>=(q-1)(p-1)
gcd(p,q)=1
对于z<min{p,q}存在a,b使得ap+bq=z
不妨设a>0>b,显然a>0
那么如果a>q,取a1=a-q,b1=b+p
那么有a1p+b1q=z.
如果a1>q,可以继续以得到
Ap+Bq=z,且0<|A|<q,0<|B|<p
pq-p-q=(p-1)q-q=(q-1)p-p
对于n>pq-q-p
n=pq-q-p+k*min{p,q}+r
r<z<min{p,q}
那么取A,B
Ap+Bq=r,且0<|A|<q,0<|B|<p
不妨设A>0

n = pq-q-p + kmin{p,q} + r
= (q-1)p-p+k
min{p,q}+Ap+Bq
** =(A-1)p+(B+q-1)p+k*min{p,q} **
其中(A-1),(B+q-1)>=0
那么无论min{p,q}是p还是q,都有
对于n>pq-q-p,都可以表示成px+qy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值