Spark的这些事<四>——SparkSQL功能测试结果

本文对比了SparkSQL与Hive在性能上的差异,发现SparkSQL执行速度比Hive快5倍。尤其在大规模数据处理时,通过内存计算显著提高了处理效率。文中还探讨了SparkSQL在复杂统计分析中的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Spark与Hive的差异

(1)、in 不支持子查询(2.0支持https://issues.apache.org/jira/browse/SPARK-4226
eg: select * from tb_test1 where serv_number in (select serv_number from tb_test1 where serv_number=138);

(2)、minus 不支持

(3)、intersect 不支持

二、 性能效率
注:
spark执行时均采用单核、1G内存执行脚本(如提高执行内存 执行效率会更快)
本次测试的事实表数据量为千万级别

这里写图片描述

综上,直接count(*)时,sparksql执行速度比hive高5倍,如果对执行内存扩大,对spark相关参数调优,则会更快。由于spark把计算放到内存中,所以会比MR更快,当然当数据量大于执行节点内存时,spark也会在在HDFS上直接计算,这是速度会有所下降,保证节点数以及各节点内存,才能更好的发挥spark的计算优势。

三、 结果比对
根据上面我们实践的整合Spark VS Hive,sparksql执行速度比hive高5倍之多,如果对执行内存扩大,对spark相关参数调优,则会更快。由于spark把计算放到内存中,所以会比MR更快,当然当数据量大于执行节点内存时,spark也会在在HDFS上直接计算,这是速度会有所下降,保证节点数以及各节点内存充足,才能更好的发挥spark的计算优势。
在执行复杂统计分析时,完全可以使用Spark SQL来替代Hive,至少会提高几倍的速度,对于一些基于Hive统计应用,随着应用的增多,可能每天需要更多的离线运算,有些报表对于与执行效率也需要提高。除了对Hive查询语句进行优化之外,应该说优化空间不大,所以这个时候可以考虑使用Spark平台来实现统计分析,而且,Spark集群可以线性扩展,对于一些调优也更容易一些。另外,Spark的发展超级迅猛,新版本频繁发布,而且在后期的版本中还会在性能方面进行大幅改进。

Spark的这些事系列文章:
Spark的这些事<一>——Windows下spark开发环境搭建
Spark的这些事<二>——几个概念
Spark的这些事<三>——spark常用的Transformations 和Actions
Spark的这些事<四>——SparkSQL功能测试结果

这是一个 Maven 项目的 `pom.xml` 文件中的依赖声明部分,它主要用于描述项目所需的外部库(即“依赖”)。下面我们逐一分析这两段 XML 配置的作用: --- ### **第一段:Spark 核心依赖** ```xml <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.12</artifactId> <version>x.y.z</version> <!-- 替换为您所使用的 Spark 版本 --> </dependency> ``` #### 功能解释: - `<groupId>` 表示该依赖所属的组织或模块名。这里是 Apache Spark 的官方命名空间。 - `<artifactId>` 是具体的构件名称,指明了我们正在引用的是 Spark 的核心组件。注意这里的 `_2.12` 后缀表明此版本兼容 Scala 2.12 系列语言标准。 - `<version>` 设定当前工程将采用的具体 Spark 发行版编号;用户需替换占位符 `x.y.z` 成实际可用数值比如 "3.0.1"。 通过引入上述配置项可以使得开发者轻松访问所有基础 API 来创建分布式的 RDDs 数据结构及相关操作函数集等等重要特性集合。 --- ### **第二段:Scala 库支持** ```xml <!-- Scala 相关支持 --> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.12.x</version> </dependency> ``` #### 功能解释: 由于许多大数据技术像 Spark 默认是以 Scala 实现出来的因而也可能需要用到原生语法特性因此额外加入了针对 scala 的 runtime libraries 提供直接调用的功能可能性。这里明确指定加载由 Scala 社区维护的标准程序库镜像源地址链接同时也要保证两个版本之间相互匹配一致才能避免潜在冲突隐患问题的发生概率最大化减少不必要的麻烦困扰状况出现几率最小化提升整体稳定性表现程度达到最优级别水平线上线下去除一切干扰因素影响效果最佳呈现形态展现给大家观看欣赏体验感觉良好享受时刻来临之际欢迎随时加入交流探讨共同进步成长吧! --- **小贴士:** 确保 `spark-core` 和 `scala-library` 的版本号保持一致性非常重要,否则可能会导致运行时错误或者编译报错等问题发生哦~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据社

码字不易,谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值