关闭

poj3281 Dining 网络流匹配问题(拆点建图+Edmond-Karp算法)

标签: 网络流
814人阅读 评论(0) 收藏 举报
分类:

链接:http://poj.org/problem?id=3281

Dining
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 19183   Accepted: 8556

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D 
Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: 
Cow 1: no meal 
Cow 2: Food #2, Drink #2 
Cow 3: Food #1, Drink #1 
Cow 4: Food #3, Drink #3 
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

【解析】:

精髓在于拆点建图,再跑一遍网络流模板代码即可。

【代码】:

#include <stdio.h>
#include <string.h>  
#include <iostream>  
#include <algorithm> 
#include <queue>   
#define mset(a,i)  memset(a,i,sizeof(a))
#define S1(n)    scanf("%d",&n)
#define S2(n,m)  scanf("%d%d",&n,&m)
#define P(n)     printf("%d\n",n);
const int INF=0x3f3f3f3f;
using namespace std;

int Map[520][520];
int pre[520];
int n,f,d,end=510;
int bfs(int s,int t)
{
	int vis[520]={0};
	mset(pre,-1);
	queue<int>q;
	q.push(s);
	while(!q.empty())
	{
		int top=q.front();
		q.pop();
		if(top==t)return 1;
		for(int i=1;i<=end;i++)
		{
			if(!vis[i]&&Map[top][i]){
				vis[i]=1;
				pre[i]=top;
				q.push(i);
			}
		}
	}
	return 0;
}
int EK()
{
	int ans=0;
	while(bfs(0,end))
	{
		int minn=INF;
		for(int u=end;pre[u]!=-1;u=pre[u])
			minn=min(minn,Map[pre[u]][u]);
		ans+=minn;
		for(int u=end;pre[u]!=-1;u=pre[u]){
			Map[pre[u]][u]-=minn;
			Map[u][pre[u]]+=minn;
		}
	}
	return ans;
}
int main()
{
	while(~scanf("%d%d%d",&n,&f,&d))
	{
		mset(Map,0);
		for(int j=1;j<=f;j++)Map[0][j+200]=1;
		for(int j=1;j<=d;j++)Map[j+300][end]=1;
		for(int i=1;i<=n;i++)
		{
			Map[i][i+100]=1;//拆点 
			int fi,di,x;
			S2(fi,di);
			while(fi--){
				S1(x);
				Map[x+200][i]=1;
			}
			while(di--){
				S1(x);
				Map[i+100][x+300]=1;
			}
		}
		cout<<EK()<<endl;
	}
}


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

UVA - 1658(网络流经典拆点方法)

把每个点(除了1,n)之外拆成i和i1,两点间连一条容量为1,费用为零的边,这样可以限定,每个点只被跑到一次,那么之后跑一个最流量为2的最小费用流就可以了。 至于其他边,流量设为1,保证每个边只被跑到一次。 //#pragma comment(linker, "/STACK:102...
  • playwfun
  • playwfun
  • 2015-09-10 21:36
  • 615

poj3281 Dining-网络流最大流-多对一的匹配

poj3281 Dining Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others. Farmer John has c...
  • ly59782
  • ly59782
  • 2016-10-18 14:24
  • 214

poj3281——Dining(网络流+拆点)

DescriptionCows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.Farmer John has cooked...
  • blue_skyrim
  • blue_skyrim
  • 2016-10-21 19:46
  • 650

POJ3281 Dining 网络流建图

http://poj.org/problem?id=3281 Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14564   Accepted:&...
  • zy704599894
  • zy704599894
  • 2016-08-05 14:30
  • 141

二分图最佳匹配(网络流)

var t,ii,i,j,n,cost,top,tail,min,tt,ttf:longint; pre,d:array[1..1000]of longint; b:array[1..10000]of longint; flag:array[1..1000]of boolea...
  • zz_ylolita
  • zz_ylolita
  • 2015-03-16 23:54
  • 1021

POJ3281 Dining(拆点,最大流,EK算法)

Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others. Farmer J...
  • riba2534
  • riba2534
  • 2018-01-08 10:20
  • 33

【POJ3281】Dining 网络流

题意:n牛m食品p饮品 第牛有ai种可行食品,bi种可行饮品 现在进行搭配,一头牛如果既有一份可行食品又有一份可行饮品就称为被满足。 求最多满足。 题解: 别忘了牛拆点、 代码: #include #include #include #include #incl...
  • Vmurder
  • Vmurder
  • 2015-01-07 10:23
  • 734

poj3281 拆点+网络流

和上题一样,水过。 代码:   #include #include #include #define MAXN 815 #define INF 1e8 #define min(a,b) (a<b?a:b) #define max(a,b) (a>b?a:b) ...
  • amourjun
  • amourjun
  • 2013-06-01 15:11
  • 364

[网络流] 二分图匹配

二分图匹配,本质上是最大流问题的一种特殊情况。指派问题 有N台计算机和K个任务,我们可以给每台计算机分配一个任务,每台计算机能够处理的任务种类各不相同,请求出最多能够处理的任务个数。这个问题可以像下面这样转化为图论模型来分析。我们可以像下面这样来定义无向二分图 G=(U⋃V,E)G = (U \b...
  • u012848631
  • u012848631
  • 2015-08-10 19:46
  • 1436

USACO5.4 TSP_背包_网络流拆点

USACO5.4 TSP_背包_网络流拆点tour 双调TSP&&传纸条模型题意,给出一个图,从最东边到最西边再返回,求最多经过的城市,除了起始只能经过一次 一开始想二分从左到右最多的城市,T 而后从左边开始两条路同时搜索,T DP,状态定义为同时走到i,j 城市的最大距离[1,1]...
  • qq_32209643
  • qq_32209643
  • 2016-06-03 20:32
  • 381
    个人资料
    • 访问:94268次
    • 积分:2812
    • 等级:
    • 排名:第14737名
    • 原创:185篇
    • 转载:9篇
    • 译文:0篇
    • 评论:33条
    博客专栏
    最新评论