###### poj3281 Dining 网络流匹配问题（拆点建图+Edmond-Karp算法）

Dining
 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19183 Accepted: 8556

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D
Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is:
Cow 1: no meal
Cow 2: Food #2, Drink #2
Cow 3: Food #1, Drink #1
Cow 4: Food #3, Drink #3
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

【解析】：

【代码】：

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <queue>
#define mset(a,i)  memset(a,i,sizeof(a))
#define S1(n)    scanf("%d",&n)
#define S2(n,m)  scanf("%d%d",&n,&m)
#define P(n)     printf("%d\n",n);
const int INF=0x3f3f3f3f;
using namespace std;

int Map[520][520];
int pre[520];
int n,f,d,end=510;
int bfs(int s,int t)
{
int vis[520]={0};
mset(pre,-1);
queue<int>q;
q.push(s);
while(!q.empty())
{
int top=q.front();
q.pop();
if(top==t)return 1;
for(int i=1;i<=end;i++)
{
if(!vis[i]&&Map[top][i]){
vis[i]=1;
pre[i]=top;
q.push(i);
}
}
}
return 0;
}
int EK()
{
int ans=0;
while(bfs(0,end))
{
int minn=INF;
for(int u=end;pre[u]!=-1;u=pre[u])
minn=min(minn,Map[pre[u]][u]);
ans+=minn;
for(int u=end;pre[u]!=-1;u=pre[u]){
Map[pre[u]][u]-=minn;
Map[u][pre[u]]+=minn;
}
}
return ans;
}
int main()
{
while(~scanf("%d%d%d",&n,&f,&d))
{
mset(Map,0);
for(int j=1;j<=f;j++)Map[0][j+200]=1;
for(int j=1;j<=d;j++)Map[j+300][end]=1;
for(int i=1;i<=n;i++)
{
Map[i][i+100]=1;//拆点
int fi,di,x;
S2(fi,di);
while(fi--){
S1(x);
Map[x+200][i]=1;
}
while(di--){
S1(x);
Map[i+100][x+300]=1;
}
}
cout<<EK()<<endl;
}
}


#### poj3281 Dining-网络流最大流-多对一的匹配

2016-10-18 14:24:31

#### hdoj 4292 Food 【拆点 网络流】

2015-08-28 22:36:33

#### 解题报告 之 POJ3281 Dining

2015-04-22 09:28:50

#### 网络流建图的几点体会（给自己看的笔记，持续更新）

2016-01-31 14:01:02

#### poj3281——Dining（网络流+拆点）

2016-10-21 19:46:52

#### POJ3281 Dining 网络流建图

2016-08-05 14:30:58

#### poj3281 - Dining

2012-09-01 20:35:13

#### 二分图最大匹配问题之网络流算法

2017-07-30 19:24:20

#### POJ 3281-Dining(最大流入门，建图详细解析)

2014-03-10 15:10:08

#### UVA - 1658（网络流经典拆点方法）

2015-09-10 21:36:10

## 不良信息举报

poj3281 Dining 网络流匹配问题（拆点建图+Edmond-Karp算法）