总结python对csv文件的操作

本文详细介绍了如何使用Python对CSV文件进行基本操作,包括写入和读取数据的方法。通过实例演示了如何创建CSV文件、写入数据以及如何读取CSV文件中的数据。

在使用python对文件操作的过程中,你肯定碰到过对csv文件的操作,下面就python对csv文件的操作进行详述。

CSV(Comma-Separated Values)逗号分隔符,也就是每条记录中的值与值之间是用分号分隔的。

一, 打开CSV文件并写入一行数据

>import csv
>c=open("url.csv","w")
>writer=csv.writer(c)
>writer.writerow(['name','address','city','state'])

这里的操作是实现csv文件的打开以及写入一行数据,首先是导入csv模块,(如果没有安装csv模块,可以参考模块的安装方式 包括pipeasy_install
然后,使用csv的open函数以w(写入)方式打开,如果该csv文件不存在 则会在相对目录中创建一个csv文件。然后实例化一个写入对象writer,最后是使用writerow函数写入一条记录。
这里写入的数据也可以使用列表数据类型list,举例说明一下:

>rlist=[]
>rlist.append('name')
>rlist.append('address')
>rlist.append('city')
>rlist.append('state')
>writer.writerow(rlist)  #这里主要是方便写入数据的格式
>c.close()

注意
在写入数据的时候可能会由于字符编码的原因导致输入的数据出现乱码,解决的方式有两种,一种可以通过先处理存入的数据的编码格式,可以查看博客,这里不再详述;另一种方式为在将数据写入到csv的时候利用csv设置写入字符地编码方式,如下所示添加命令行:

>import csv
>c=open("url.csv","w")
>c.write('\xEF\xBB\xBF') #这里是重点地方********重点内容**
>writer=csv.writer(c)
>writer.writerow(['name','address','city','state'])

二, 读取CSV文件

#coding: utf-8
import csv
c=open("url.csv","rb") #以rb的方式打开csv文件
read=csv.reader(c)
for line in read:  
	print line[0],line[1]
c.close()

for语句实现了遍历csv.reader读取的数据,然后通过print输出。这里的line代表读取的一行数据,**line[0]**表示改行数据的第一个属性列对应的值。

另外,对于打开csv文件的方式,这里只是介绍了’w’和’rb’两种方式,详细的打开方式讲解可以查看 博客

<think>我们正在回答用户关于Python处理CSV文件的常用方法和应用场景的问题。根据用户的问题,我们将重点介绍csv模块的常用方法(包括reader,writer,DictReader,DictWriter)以及一些典型应用场景。同时,我们会参考提供的引用内容(引用[1]和引用[2])来增强回答的可靠性,并在适当位置添加引用标识。回答结构:1.介绍CSV文件以及Python中处理CSV模块。2.详细说明读取CSV文件的常用方法(csv.reader和csv.DictReader)。3.详细说明写入CSV文件的常用方法(csv.writer和csv.DictWriter)。4.介绍一些典型应用场景,并给出示例。5.总结。注意:按照要求,行内数学表达式使用$...$,独立公式使用$$...$$(但本问题可能涉及较少数学公式,如果有则按规则处理)。同时,在回答末尾生成相关问题。由于用户问题主要关于CSV操作,我们不会深入讨论datetime模块,但引用[2]提到的时间处理在CSV中可能用于处理时间数据,因此可能会简单提及。开始回答:</think>### Python CSV操作常用方法及典型场景 Python内置的`csv`模块提供了高效处理CSV文件的功能,以下是核心方法和应用场景: #### 一、常用操作方式 1. **基础读写(列表形式)** - **读取**:`csv.reader`逐行返回列表 ```python import csv with open('data.csv', 'r') as f: reader = csv.reader(f) for row in reader: # 每行是列表 print(row[0], row[2]) # 按索引访问 ``` - **写入**:`csv.writer`写入列表数据 ```python data = [["Name", "Age"], ["Alice", 28]] with open('output.csv', 'w', newline='') as f: writer = csv.writer(f) writer.writerows(data) # 写入多行 ``` 2. **字典形式读写(推荐)** - **读取**:`csv.DictReader`返回有序字典 ```python with open('data.csv', 'r') as f: reader = csv.DictReader(f) # 首行为键 for row in reader: print(row["Name"], row["Email"]) # 按列名访问 ``` - **写入**:`csv.DictWriter`指定字段名 ```python fieldnames = ["ID", "Price"] with open('prices.csv', 'w') as f: writer = csv.DictWriter(f, fieldnames=fieldnames) writer.writeheader() # 写入标题行 writer.writerow({"ID": "A01", "Price": 9.99}) ``` #### 二、关键参数说明 | 参数 | 作用 | 示例值 | |---------------|-------------------------------|---------------------| | `delimiter` | 指定分隔符 | `delimiter=';'` | | `quotechar` | 包裹特殊字符的符号 | `quotechar='"'` | | `quoting` | 引用规则 | `quoting=csv.QUOTE_MINIMAL` | | `newline=''` | 避免写入时出现空行(Windows) | 必须搭配`'w'`模式 | #### 三、典型应用场景 1. **数据迁移与清洗** - 转换Excel导出的CSV数据,过滤无效记录: ```python with open('raw.csv') as infile, open('clean.csv', 'w') as outfile: reader = csv.DictReader(infile) writer = csv.DictWriter(outfile, fieldnames=reader.fieldnames) writer.writeheader() for row in reader: if float(row["Sales"]) > 1000: # 筛选高销售额记录 writer.writerow(row) ``` 2. **日志文件处理** - 解析服务器日志(时间戳处理参考`datetime`模块[^2]): ```python from datetime import datetime with open('server_log.csv') as f: for row in csv.DictReader(f): timestamp = datetime.strptime(row["Time"], "%Y-%m-%d %H:%M:%S") if timestamp.hour > 22: # 提取夜间日志 process_night_log(row) ``` 3. **API数据交互** - 将API返回的JSON转为CSV: ```python import json api_data = json.load(open('api_response.json')) with open('output.csv', 'w') as f: writer = csv.DictWriter(f, fieldnames=["id", "value"]) writer.writeheader() for item in api_data["results"]: writer.writerow({"id": item["id"], "value": item["metrics"]["value"]}) ``` 4. **科学计算预处理** - 为`pandas`/`numpy`准备数据: ```python import numpy as np with open('sensor.csv') as f: data = [float(row["Value"]) for row in csv.DictReader(f)] np_array = np.array(data) # 转换为NumPy数组 ``` #### 四、性能优化技巧 - 大文件处理:使用迭代器避免内存溢出 - 复杂转换:结合`pandas`(适合>1GB文件) - 特殊编码:指定`encoding`参数(如`encoding='utf-8-sig'`) > **注意**:对于超大型CSV或复杂关系数据,建议使用`pandas`(`pd.read_csv()`)或数据库工具[^1]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值