Ubuntu16.04+GTX1080配置TensorFlow并实现图像风格转换

1. TensorFlow

TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,表达了高层次的机器学习计算,大幅简化了第一代系统,并且具备更好的灵活性和可延展性。

TensorFlow一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从电话、单个CPU / GPU到成百上千GPU卡组成的分布式系统。

TensorFlow支持CNN、RNN和LSTM算法,这都是目前在Image,Speech和NLP最流行的深度神经网络模型。

2015年11月5日,Google开源了TensorFlow,按他们自己的说法,tensorflow会“成为机器学习界的安卓”。所以无论如何,这也表达了TensorFlow强大的性能以及应用的广泛性。无论如何,TensorFlow的开源对于学术界以及工业界,都是非常有价值的。

今天,我们就尝试在Ubuntu16.04+GTX1080上配置和使用这个强大的深度学习工具:TensorFlow。

2. 配置

Ubuntu16.04
GTX1080
CUDA8.0
cudnn5.1
TensorFlow

3. 安装

由于电脑的显卡以及CUDA8.0已经配置好,在此不再赘述,可以参考本人的第一篇文章。

3.1 cudnn

TensorFlow需要用到cudnn,cudnn是NVIDIA开发的用于深度神经网络的GPU加速库。下载地址
这里我们下载的是:Download cuDNN v5.1 (August 10, 2016), for CUDA 8.0,因为我们的显卡是GTX1080以及CUDA8.0,你也可以根据你的显卡来选择你需要的版本。
下载完后解压:

cp  cudnn-8.0-linux-x64-v5.1.solitairetheme8 cudnn-8.0-linux-x64-v5.1.tgz
tar -xvf cudnn-8.0-linux-x64-v5.1.tgz

以下的操作需要管理员权限。
复制头文件:

cd cuda/include
sudo cp cudnn.h /usr/local/cuda-8.0/include

再将lib64目录下的动态文件进行复制和链接:

 cp lib* /usr/local/
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值