机器学习中的超平面

一、仿射空间

(1)直线——1维仿射空间

给定n维的空间中,一条直线是方向向量v以及直线上的一点P决定。如下图所示:

line figure

图1:line figure illustration

 

因此直线方程如下所示,其中i表示直线上任一点,t表示标量。

                                                                                                          i=t*v+P

注意,始终的i,v,p均为n维空间的点,即n维空间向量。

 (2)平面——2维仿射空间

给定n维空间,空间中的一个平面是由空间上的一点P和平面上两个线性无关的向量v,w(可通过线性组合得到该平面中的任意向量),如下图所示:

plane figure

图2:plane figure illustration

 

因此平面方程如下式所示,其中i表示平面中的任意一点,s,t表示标量:

                                                        i=t*v+s*w+P

(3) k维仿射空间

由(1),(2)中推广,给定的n维空间中,k维仿射空间由空间中的一点P和k个线性无关的向量v1,v2,v3,...,vk决定,

k维仿射空间的方程如下所示,其中i表示k维仿射空间中的任意一点,t1,t2,..,tk表示标量:

                                  i=t1*v1+t2*v2+...+tk*vk+P

因此,可以看到,空间中的一条直线是一个1维仿射空间,一个平面是一个2维仿射空间。

 

二 超平面

(1)二维空间中的超平面

假设二维空间中的点集i=(x2,x2),满足下式,其中a,b,c为标量,且a,b不同时为0:

                                                 ax1+bx2+c=0

令t=x1,则点集i可以表示为:

                                  i=(x1,x2)=(t,-at/b-c/b)=t(1,-a/b)+(0,-c/b)

由上式可知道,这表示的是方向向量为(1,-a/b),并经过(0,-c/b)的直线。

记向量n=(a,b),则

                                                         n*i+c=0

记直线上另一点为P=(p1,p2),则

                                                                        n*(i-P)=0

可以看出,n是直线的法向量。

(2)N维空间的超平面

在给定的N维空间中,超平面由空间中的一点P和一个向量n决定,超平面方程如下:

                                                         n*(i-P)=0

其中i表示超平面上的任意一点。

i,n,p均为N维向量。n为超平面的法向量。若i=(i1,i2,..,iN),n=(n1,n2,..,nN),p=(p1,p2,..pN),则超平面方程可以表示成:

                             n1*i1+n2*i2+...nN*iN+d=0

其中

                                        d=-n*P

按照上述定义,二维空间的超平面是一条直线,三维空间的超平面是一个平面,而N维空间的超平面则是N-1维的仿射空间。

Rn

(3)超平面性质

超平面将空间分成两部分,一部分大于0,一部分小于0。

空间中任意一点到超平面的距离计算:

记n是超平面的法向量,P是超平面上的一点,而Q是超平面外的一点,计算Q到超平面的距离:

                         d=|(Q-P)*n|/|n|

                          =|(n*Q+d)|/|n|

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值