超平面详解

学习SVM绕不开超平面的概念。先复习一些基础的概念(平面方程),帮助理解。
1. 平面及其方程:
因为平面与空间直线分别是曲面与空间曲线的特例,所以在讨论平面与空间直线以前,先引入有关曲面方程与空间曲线方程的概念。
在空间解析几何中,任何曲面或曲线都可以看做点的集合轨迹,在这样的意义下,如果曲面S与三元方程: F(x, y, z) = 0 (1-1)
有下述关系:
(1)曲面S上任一点的坐标都满足方程(1-1)
(2)不在曲面S上的点的坐标都不满足方程(1-1)
那么,方程(1-1)就叫做曲面S的方程,而曲面S就叫做方程(1-1)的图形。
**一次曲面图形**
空间曲线可以看做两个曲面S1, S2的交线,设
F(x, y, z)= 0 和 G(x, y, z )= 0
分别是这两个曲面的方程,他们的交线为C。因为曲线C上的任何点的坐标应同时满足这两个曲面的方程,所以应满足方程组:
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \left\{ \begin{array}{c} F(x, y, z)= 0\\ G(x, y, z )= 0 \end{array} \right. {Fx,y,z=0Gx,y,z=0 一次曲线图形
2. 平面的方程
(1)点法式方程(1-2): A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_{0}) + B (y-y_{0}) + C( z-z_{0}) = 0 A(xx0)+B(yy0)+C(zz0)=0
(2)一般方程(1-3): A x + B y + C z + D = 0 Ax + By +Cz +D = 0 Ax+By+Cz+D=0
(3)截距式方程(1-4): x a + y b + z c = 1 \frac{x}{a}+\frac{y}{b}+\frac{z}{c} =1 ax+by+cz=1

. 方程详解(1-2):
平面的法线向量: 如果一非零向量垂直于一平面,这个向量就叫做该平面的法线向量。
因为过空间一点可以作且只能做一平面垂直于一已知直线,所以当平面 π \pi π上一点 M 0 ( x 0 , y 0 , z 0 ) M_{0}(x_{0}, y_{0}, z_{0}) M0(x0,y0,z0) 和它的一个法线向量 n = (A, B, C) 为已知时,平面 π \pi π的位置就完全确定了。下面我们来建立平面 π \pi π的方程。
超平面
设 M(x, y, z)是平面 π \pi π上的任意一点,则向量 M 0 M → \overrightarrow {M_{0}M} M0M 必与平面 π \pi π的法向量 n n n 垂直,即它们的数量积等于0: n ∙ M 0 M → = 0 n\bullet\overrightarrow {M_{0}M}=0 nM0M =0因为 n = (A, B, C), M 0 M → = ( x − x 0 ,   y − y 0 ,   z − z 0 ) \overrightarrow {M_{0}M} =(x-x_{0}, \ y-y_{0}, \ z-z_{0}) M0M =(xx0, yy0, zz0)所以有:
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_{0}) + B (y-y_{0}) + C( z-z_{0}) = 0 A(xx0)+B(yy0)+C(zz0)=0

. 方程详解(1-3):
因为平面的点法式方程(1-2)是 x, y 和 z 的一次方程,而任一平面都可以用它上面的一点及它的法线向量来确定,所以任意平面都可以用三元一次方程来表示。
设,有三元一次方程: A x + B y + C z + D = 0 Ax + By +Cz +D = 0 Ax+By+Cz+D=0
我们任取满足该方程的一组数 ( x 0 , y 0 , z 0 ) (x_{0}, y_{0}, z_{0}) (x0,y0,z0),即方程(1-5) A x 0 + B y 0 + C z 0 + D = 0 Ax_{0} + By_{0} +Cz_{0} +D = 0 Ax0+By0+Cz0+D=0把上述两等式相减,得方程(1-3) A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_{0}) + B (y-y_{0}) + C( z-z_{0}) = 0 A(xx0)+B(yy0)+C(zz0)=0把它和平面点法式方程(1-2)做比较 ,可以知道方程(1-3)是通过点 M 0 ( x 0 , y 0 , z 0 ) M_{0}(x_{0}, y_{0}, z_{0}) M0(x0,y0,z0) ,且以 n = ( A , B , C ) n = (A, B, C) n=(A,B,C)为法线向量的平面方程。 其中 x, y, z 的系数就是该平面的一个法线向量 n 的坐标。

. 方程详解(1-4):
设一平面与 x, y 和 z 轴的焦点一次为 P ( a , 0 , 0 ) , Q ( 0 , b , 0 ) , R ( 0 , 0 , c ) P(a, 0, 0), Q(0, b, 0), R(0, 0, c) P(a,0,0),Q(0,b,0),R(0,0,c)三点,如下图:

设所求平面的方程为: A x + B y + C z + D = 0 Ax + By +Cz +D = 0 Ax+By+Cz+D=0
P ( a , 0 , 0 ) , Q ( 0 , b , 0 ) , R ( 0 , 0 , c ) P(a, 0, 0), Q(0, b, 0), R(0, 0, c) P(a,0,0),Q(0,b,0),R(0,0,c)三点都在这平面上,所以点 P , Q 和 R P, Q和R P,QR都满足以上平面方程,代入平面方程,即有:
{ a A + D = 0 b B + D = 0 c C + D = 0 \left\{ \begin{array}{c} aA + D = 0\\ bB + D = 0\\ cC + D = 0 \end{array} \right. aA+D=0bB+D=0cC+D=0 解得 A = − D a , B = − D b , C = − D c A=-\frac{D}{a}, \qquad B=-\frac{D}{b}, \qquad C=-\frac{D}{c} A=aD,B=bD,C=cD以此代入方程(1-3)并除以 D ( D ≠ 0 ) D(D \ne0) D(D̸=0) 而 a, b 和 c 依次叫做平面在 x, y 和 z 轴上的截距。

3.超平面
有了上面平面的理解,超平面就是一个数学概念了。 一维直线空间上的超平面是数轴上的一个点,二维平面空间上的超平面是一条线,三维空间里的超平面是一个面。以此类推。
百度百科上对超平面的数学定义是这样的:超平面H是从n维空间到n-1维空间的一个映射子空间,它有一个 n 维向量和一个实数定义。因为是子空间,所以超平面一定过原点。

4. 点到超平面的距离
P 0 ( x 0 ,   y 0 ,   z 0 ) P_{0}(x_{0}, \ y_{0}, \ z_{0}) P0(x0, y0, z0) 是平面 A x + B y + C z + D = 0 Ax + By +Cz +D = 0 Ax+By+Cz+D=0 外一点,求 P 0 P_{0} P0 到这个平面的距离。
在这里插入图片描述
在平面上任取一点 P 1 ( x 1 ,   y 1 ,   z 1 ) P_{1}(x_{1}, \ y_{1}, \ z_{1}) P1(x1, y1, z1),并作一法线向量 n ,由上图,考虑到 P 0 P 1 → \overrightarrow {P_{0}P_{1}} P0P1 与 n 的夹角 θ \theta θ 也可能是钝角,所求的距离 d = ∣ P 0 P 1 → ∣ ∣ c o s θ ∣ = ∣ P 0 P 1 → ∙ n ∣ ∣ n ∣ d =|\overrightarrow {P_{0}P_{1}}||cos\theta|=\frac{|\overrightarrow {P_{0}P_{1}}\bullet n|}{|n|} d=P0P1 cosθ=nP0P1 n n = ( A , B , C ) , P 0 P 1 → = ( x 0 − x 1 ,   y 0 − y 1 ,   z 0 − z 1 ) n=(A,B,C),\qquad\overrightarrow {P_{0}P_{1}}=(x_{0}-x_{1}, \ y_{0}-y_{1}, \ z_{0}-z_{1}) n=(A,B,C),P0P1 =(x0x1, y0y1, z0z1) P 0 P 1 → ∙ n ∣ n ∣ = A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) A 2 + B 2 + C 2 \frac{\overrightarrow {P_{0}P_{1}}\bullet n}{|n|}=\frac{A(x-x_{0}) + B (y-y_{0}) + C( z-z_{0})}{\sqrt{A^2+B^2+C^2}} nP0P1 n=A2+B2+C2 A(xx0)+B(yy0)+C(zz0) = A x 0 + B y 0 + C z 0 − ( A x 1 + B y 1 + C z 1 ) A 2 + B 2 + C 2 \qquad\qquad\qquad=\frac{Ax_{0} + By_{0} + Cz_{0}-(Ax_{1} + By_{1} + Cz_{1})}{\sqrt{A^2+B^2+C^2}} =A2+B2+C2 Ax0+By0+Cz0(Ax1+By1+Cz1)
因为 A x 1 + B y 1 + C z 1 + D = 0 Ax_{1} + By_{1} + Cz_{1}+D = 0 Ax1+By1+Cz1+D=0,所以 P 0 P 1 → ∙ n ∣ n ∣ = A x 0 + B y 0 + C z 0 + D A 2 + B 2 + C 2 \frac{\overrightarrow {P_{0}P_{1}}\bullet n}{|n|}=\frac{Ax_{0} + By_{0} + Cz_{0}+D}{\sqrt{A^2+B^2+C^2}} nP0P1 n=A2+B2+C2 Ax0+By0+Cz0+D
由此,得点 P 0 ( x 0 ,   y 0 ,   z 0 ) P_{0}(x_{0}, \ y_{0}, \ z_{0}) P0(x0, y0, z0) 到平面 A x + B y + C z + D = 0 Ax + By +Cz +D = 0 Ax+By+Cz+D=0 的距离公式: d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{|Ax_{0} + By_{0} + Cz_{0}+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

其矢量表示方式如下:设矢量 w 为平面的法向量,标量 b 为平面到原点的截距,其中 w , x w, x w,x 均为列向量, 也可得超平面方程: f ( x ) = w T + b = 0 f(x)=w^T+b=0 f(x)=wT+b=0由此,点 x 到超平面的距离公式为 d = ∣ w T x + b ∣ ∣ ∣ w ∣ ∣ d=\frac{|w^Tx+b|}{||w||} d=wwTx+b

参考资料:同济版《高等数学》下册,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值