- 最简单的情况,数据比较小,直接采用C(a, b) = a * (a - 1) *....* (a - b + 1) / (b * (b - 1) *...* 2 * 1)
试用数据范围:a <= 29。在a = 30, b = 15时,计算分子乘机时即超范围
LL C(LL a, LL b) { if (a < b) return 0; LL ret = 1; FE(i, a - b + 1, a) ret *= i; FE(i, 2, b) ret /= i; return ret; }
- 也适用比较简单的情况,数据比较小,采用C(a, b) = a! / (b! * (a - b)!)
由于分子比第一种方法更大,所以适用范围更小,为a <= 20
LL fx[MAXN]; void init() { fx[0] = 1; FF(i, 1, MAXN) fx[i] = fx[i - 1] * i; } LL C(LL a, LL b) { if (a < b) return 0; return fx[a] / fx[b] / fx[a - b]; }
- 预处理出需要的组合数,如需计算较大的组合数可采用(经常会取模,也很方便)。使用C(a, b) = C(a - 1, b - 1) + C(a - 1, b - 1)递推处理
因为计算过程中采用递推的加法运算,所以不取模的时候最大可以算到a = 66
但是,这种情况一般伴随着取模的操作,所以考虑到内存限制的时候,一般可以计算到a = 1000(不一定,受限于内存)
const int MAXN1 = 1000; const int MAXN2 = 1000; LL f[MAXN1][MAXN2]; void init() { FF(i, 0, MAXN1) f[i][0] = 1; FF(i, 1, MAXN1) { FE(j, 1, min(i, MAXN2 - 1)) f[i][j] = (f[i - 1][j] + f[i - 1][j - 1]) % MOD; } }
- 采用分解质因子的方式,可以计算足够大的数(因为数字会超过long long的范围,所以结果依然用质因子表示,模板中计算出了相应的数)
map <int, LL> m; //分解质因数 //k为1或-1 void fun(int n, int k) { for (int i = 2; i <= sqrt(n * 1.0); i++) { while (n % i == 0) { n /= i; m[i] += k; } } if (n > 1) { m[n] += k; } } //大数快速幂取模 LL quick_pow(LL a, LL b) { LL ret = 1; while (b) { if (b & 1) { ret *= a; ret %= MOD; } b >>= 1; a *= a; a %= MOD; } return ret; } //求组合数 LL C(LL a, LL b) { if (a < b || a < 0 || b < 0) return 0; m.clear(); LL ret = 1; b = min(a - b, b); for (int i = 0; i < b; i++) { fun(a - i, 1); } for (int i = b; i >= 1; i--) { fun(i, -1); } ///以下计算出了具体的数 for (__typeof(m.begin()) it = m.begin(); it != m.end(); it++) { if ((*it).second != 0) { ret *= quick_pow((*it).first, (*it).second); ret %= MOD; } } return ret; }
关于acm中常见的计算组合数的方法总结
最新推荐文章于 2022-08-13 20:42:22 发布