关闭

Burnside引理和Polya定理

481人阅读 评论(0) 收藏 举报
分类:

等价类计数问题,都可以用Burnside引理解决

Burnside引理:对于一个置换f,若一个着色方案s经过置换后不变,称s为f的不动点。将f的不动点数目记为C(f),则可以证明等价类数目为所有C(f)的平均值。

Polya定理:一般的,如果置换f分解称m(f)个循环的乘积,那么每个循环内所有元素的颜色必须相同,假设涂k种颜色,则有C(f)=k^m(f)。代入Burnside引理的表达式之后得到Polya定理:等价类的个数等于所有置换f的k^m(f)的平均数。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:327042次
    • 积分:7190
    • 等级:
    • 排名:第3091名
    • 原创:419篇
    • 转载:14篇
    • 译文:0篇
    • 评论:32条
    文章分类
    最新评论