6.5 不同类型的数据集
至此,我们知道,数据集由组织结构和与之关联的属性数据构组成,组织结构包括拓扑结构和几何结构。数据集的类型是由它的组织结构决定,同时数据集的类型决定了点和单元之间的相互关系,图6.11列出了常见的数据集类型,图6.12是对应的类的继承图。
依据数据集的结构特征,可分为规则结构和不规则结构的数据。如果组成数据集的点是规则的,则称该数据集的几何是规则的,如果组成数据集的单元之间的拓扑是规则的,则称该数据集的拓扑是规则的(这句话可能有点绕,不过意思在前面的章节已经讲得很清楚了,简单地说就是点决定几何结构,单元决定拓扑结构)。规则数据集的点和单元都是规则排列的,每个点的位置都可以依据相互之间的关系得到;不规则结构数据集没有固定的模式,不能用简单的方式描述,在存储和计算时需要更多的内存和资源,但它在数据表达方面相对而言则更加自由,能更加细致、灵活的表达。
6.5.1 vtkImageData
通过第5章“VTK在图像处理中的应用”的学习,相信我们对vtkImageData数据集的类型并不陌生。vtkImageData类型的数据是按规则排列在矩形方格中的点和单元的集合,如图6.11(a)所示,如果数据集的点和单元排列在平面(二维)上,称此数据集为像素映射(Pixmap)、位图或图像,由vtkPixel单元组成;如果排列在层叠面(三维)上,则称为体(Volume),由vtkVoxel单元组成。vtkImageData是由一维的线、二维的像素或三维的体素组成,vtkImageData在几何结构及拓扑结构都是规则的,因此每个点的位置可隐式地表达,只需要知道vtkImageData数据的维数、起始点的位置和相邻点之间的间隔,就可以计算出每个点的空间位置。数据维数用一个三元组(nx, ny, nz)来表示,分别表示在X、Y和Z方向上点的个数。vtkImageData数据集的点的个数一共是nx×ny×nz

本文介绍了VTK中的几种基本数据集类型,包括vtkImageData、vtkPolyData、vtkRectilinearGrid、vtkStructuredGrid和vtkUnstructuredGrid。vtkImageData常用于图像处理和医学图像,具有规则的几何和拓扑结构。vtkPolyData是不规则结构,适用于复杂形状表达。vtkRectilinearGrid点沿坐标轴排列,几何部分规则。vtkStructuredGrid用于有限差分分析,具有规则拓扑和不规则几何。vtkUnstructuredGrid是最通用的,适用于各种不规则情况,但存储和计算成本高。最后,vtkUnstructuredPoints是非结构化点集,适合表示非结构化数据。
最低0.47元/天 解锁文章
1780

被折叠的 条评论
为什么被折叠?



