自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(159)
  • 资源 (2)
  • 收藏
  • 关注

原创 深入理解帧率

本文深入探讨了帧率在多媒体处理中的关键作用和技术实现。文章首先解析了帧率的本质,包括其数学定义、三个维度(采样、播放、同步)以及不同场景下的感知差异(如24fps的电影感与60fps的流畅感)。随后详细分析了帧率在视频采集、编码、处理和实时渲染四个核心场景中的具体应用: 视频采集部分揭示了帧率与硬件性能的平衡关系,通过屏幕录制、摄像头采集和游戏捕获三个案例,展示了如何根据场景需求选择合适的帧率策略。 视频编码章节深入剖析了帧率对码率分配、GOP结构和运动估计的影响,比较了不同封装格式对帧率的支持特性。 针对

2025-12-30 08:42:07 1058

原创 OGRE 3D----OGRE 3D + QML Compositor完整实战指南

本文展示了一个将OGRE3D渲染引擎深度集成到QtQuick/QML应用中的项目,实现了三种Compositor后处理效果(黑白、模糊、复古)。项目采用三层架构设计:QML层负责UI交互,OGRE层处理3D渲染,集成层通过OpenGL上下文共享实现桥接。核心技术包括OpenGL上下文共享机制、多视口分层渲染、动态Compositor切换、Windows消息跨线程通信等。系统通过Qt场景图自定义节点和单例管理器架构,实现了高效的渲染流程和灵活的后处理效果切换。

2025-12-03 09:55:12 167

原创 OGRE 3D----Compositor实现高级后处理效果 - 简单示例

本文介绍了使用Ogre引擎的Compositor系统实现四种后处理效果的方法。项目包含黑白、模糊、复古和边缘检测四种效果,通过键盘可实时切换。文章详细讲解了Compositor定义、着色器实现和C++代码集成,包括场景渲染、材质设置和输入处理。核心要点包括:1) Compositor通过渲染纹理和全屏四边形实现后处理;2) 每种效果使用特定着色器算法(如高斯模糊、Sobel边缘检测);3) 完整的项目结构包含资源管理、CMake配置和交互控制。该示例展示了Ogre后处理系统的完整工作流程,可作为图形效果开发

2025-12-01 09:32:06 132

原创 OGRE 3D----Compositor实现高级后处理效果 - 原理篇

本文深入解析了Ogre引擎中的Compositor系统实现后处理效果的全过程。Compositor通过定义中间纹理、渲染场景到纹理、再渲染全屏四边形等步骤,配合GLSL着色器实现复杂视觉效果。文章详细剖析了从Compositor脚本解析、材质定义、着色器绑定到最终OpenGL绘制的完整流程,包括核心组件如CompositorInstance、CompositionPass的工作原理,以及如何将OGRE材质和着色器转换为原生OpenGL调用。其中特别分析了5x5高斯模糊的实现细节,包括纹理坐标系转换、unif

2025-11-19 09:47:10 152

原创 理解AI智能体:智能体记忆

AI智能体的记忆系统:从理论到实践 本文深入探讨了AI智能体中记忆系统的重要性与实现方法。当前AI系统(如ChatGPT)普遍缺乏真正的记忆能力,导致每次对话都需从零开始。文章指出,真正的AI记忆应具备状态、持久性和选择性三大支柱,并区分了短期记忆(单次对话)和长期记忆(跨会话)的不同作用。 在技术实现上,文章通过构建一个邮件处理智能体的案例,展示了三种核心记忆类型的应用:情景记忆(基于历史案例分类邮件)、语义记忆(存储用户信息)和程序性记忆(动态优化处理规则)。智能体通过LangGraph框架整合这些记忆

2025-08-28 12:22:25 1220

原创 理解AI 智能体:多智能体架构

本文探讨了大语言模型驱动的多智能体系统架构设计。首先分析了单智能体系统的局限性,如工具过多、上下文复杂等问题,进而提出通过多智能体分解任务以提升效率。文章详细介绍了七种主要的多智能体架构模式:并行模式(独立执行任务)、顺序模式(链式处理)、循环模式(迭代改进)、路由模式(按类别分发)、聚合模式(结果合成)、网络模式(去中心化协作)和监督者模式(集中控制)。针对每种模式提供了Python代码示例和适用场景分析,并比较了不同架构的优缺点。此外,文章还深入讨论了智能体间的通信机制选择,包括状态共享与工具调用的权衡

2025-08-26 13:51:58 1438

原创 理解AI 智能体:智能体架构

本文探讨了AI智能体的架构类型及其设计模式。智能体架构可分为反应式、慎思式、混合式、神经符号式和认知式五大类,每种架构在响应速度、复杂任务处理和学习能力上各具特点。文章重点介绍了LangGraph中的智能体设计模式,包括多智能体系统、规划智能体以及反思与批判三大类,并详细说明了网络、监督者、规划执行、思维树等具体实现方式。这些架构和设计模式为构建适应不同场景的高效AI智能体提供了技术基础,体现了AI系统向模块化、协作化和目标驱动化发展的趋势。

2025-08-22 12:34:31 1138

原创 理解AI 智能体:工作流 vs 智能体

AI工作流与智能体的关键区别与应用指南 本文深入探讨了AI工作流与智能体系统的核心差异及其适用场景。AI工作流通过预定义路径协调LLM和工具(如提示链式处理、并行化、路由等模式),适合结构化任务;而智能体系统则由LLM动态引导流程,具备自主决策能力,适合开放式复杂任务。文章对比了两种技术的优缺点,提供了多种实现模式(如协调器-工作者、评估器-优化器等),并建议开发策略:从简单LLM调用开始,根据需求逐步引入复杂性,同时强调工具设计透明度和系统可维护性。文中还介绍了主流框架的适用场景及底层实现建议。

2025-08-20 13:50:49 1240

原创 理解AI 智能体:智能体类型

本文系统介绍了七种主要AI智能体的类型及其特点:从简单的反射型智能体到复杂的学习型智能体和多智能体系统。详细分析了每种智能体的实现原理、应用场景、优势及局限性,并提供了代码示例。特别探讨了基于模型的反射型智能体(如Amazon Bedrock)和分层智能体(如Google UniPi)等典型案例。文章还总结了AI智能体在各行业的变革性应用,指出未来神经符号集成和量子优化等技术将进一步拓展智能体系统的能力边界。通过理解不同类型智能体的特性,可以针对特定场景选择最优方案,推动各领域的智能化发展。

2025-08-19 12:17:59 1103

原创 理解上下文工程:构建可靠AI系统的核心方略

《AI Agent性能提升的关键:上下文工程的系统化实践》 摘要:研究表明,AI Agent表现不佳往往源于上下文工程(Context Engineering)的失败,而非模型本身能力不足。本文系统性地探讨了上下文工程的核心概念,将其分为指导性、信息性和行动性三类上下文,并指出其与提示词工程、RAG的本质区别。通过典型示例分析,揭示了上下文缺失或冗余导致的性能问题,提出了四大实践框架:写入(持久化存储)、选取(动态检索)、压缩(信息精炼)和隔离(流程边界管理)。文章强调,优秀的上下文工程能显著提升AI系统的

2025-08-15 12:24:42 822

原创 理解n8n:零代码集成AI的自动化利器

摘要:n8n是一款开源工作流自动化工具,通过可视化节点连接各类应用和服务,支持400+集成。创立于2019年,其基于节点的方法和社区共享的2600+模板使其成为自动化领域领导者。相比手动工作,n8n能节省时间、减少错误、降低成本并轻松集成AI。核心功能包括可视化工作流编辑器、触发器和操作节点,支持从简单邮件处理到复杂AI驱动任务。用户可通过自托管或云端快速部署,适用于企业和个人实现智能自动化。

2025-08-14 12:27:55 1050

原创 儿子迷上奥特曼卡牌,不会小程序的我用AI造了个“奥萌星球”

摘要:一位C++程序员父亲为满足3岁儿子对奥特曼的热爱,借助AI工具开发了"奥萌星球"微信小程序。该程序包含奥特曼图鉴、技能展示、对战模拟和排行榜等功能,实现了父子共创的温馨故事。项目完全开源,展现了AI降低技术门槛的潜力,也体现了新技术与亲子互动的完美结合。作者希望通过这个案例,鼓励更多人利用技术实现创意。(99字)

2025-08-14 08:23:42 1449

原创 理解LangChain — Part 5:文档加载器与文本分割器

本文详细介绍了构建RAG(检索增强生成)管道的核心组件:文档加载器和文本分割器。文档加载器支持从PDF、Office文档、Web内容等多种来源提取数据,并将其标准化为统一格式。文本分割器则负责将大文档分解为适合语言模型处理的片段,重点讨论了字符分割、递归分割、基于token分割等多种方法及其参数配置。文章还提供了完整的文档处理管道实现示例,并针对常见挑战提出了内存管理、结构保留和自适应分块等解决方案。最佳实践部分强调根据数据类型选择合适工具,保留关键元数据,以及持续监控优化性能,为构建高效RAG系统提供了全

2025-08-13 13:40:46 997

原创 理解LangChain — Part 4:赋予大语言模型(LLM)长期记忆能力

本文探讨了如何通过LangChain赋予大语言模型(LLM)记忆能力,解决其默认无状态的问题。文章分析了构建记忆系统的三大挑战:上下文窗口限制、信息相关性和组织问题,并介绍了四种记忆类型:对话缓冲区记忆(保存完整历史)、缓冲区窗口记忆(仅保留最近交流)、摘要记忆(用LLM总结对话)和Token缓冲区记忆(基于token数量限制)。每种类型适用于不同场景,如短对话、技术支持或长期交流。作者建议根据需求选择合适记忆方式,并注意管理token限制,以平衡上下文保留与性能优化。

2025-08-12 12:58:01 1219

原创 理解LangChain — Part 3:链式工作流与输出解析器

本文深入探讨了LangChain中的结构化输出和链式工作流两大核心功能。结构化输出部分介绍了如何通过TypedDict、Pydantic和JSONSchema定义数据模式,并使用StrOutputParser、JsonOutputParser等解析器确保模型输出的规范性和可编程处理。链式工作流部分重点讲解了LCEL(LangChain表达式语言)如何通过可运行组件(Runnables)将提示、模型、解析器等模块化组合,构建复杂应用流程。文章详细展示了顺序链、并行链、条件链和路由链等不同工作流模式的实际应用场

2025-08-11 13:54:02 1027

原创 理解LangChain — Part 2:模型与提示工程

本文深入探讨了AI语言模型的核心概念及其在LangChain框架中的应用。首先介绍了从AI到生成式AI的发展历程,重点解析了大语言模型(LLM)的定义、Transformer架构原理及其在文本生成、翻译等任务中的强大能力。随后详细阐述了LangChain中的两类模型:语言模型(包括LLM和聊天模型)和嵌入模型,并展示了如何通过统一接口连接不同厂商的模型服务。 文章重点讲解了提示工程这一关键技能,系统介绍了零样本提示、小样本提示、思维链(CoT)、思维树(ToT)和ReAct等多种提示策略,并通过丰富代码示例

2025-08-08 12:45:52 608

原创 理解LangChain — Part 1:LangChain简介

文章摘要:LangChain是一个开源框架,旨在解决大型语言模型(LLM)的局限性,如无状态性、缺乏工具访问能力等。它提供统一接口支持多种LLM,内置记忆系统、工具链和文档处理功能,简化复杂AI应用的开发。相比Haystack、LlamaIndex等其他框架,LangChain更专注于构建智能体系统和多步骤工作流。配套工具LangGraph、LangSmith和LangServe完善了开发流程。典型应用包括聊天机器人、检索增强生成(RAG)和智能体系统,使开发者能快速构建生产级AI解决方案。

2025-08-07 12:17:02 901

原创 理解 LangGraph:构建企业级 Agent 驱动的 AI 系统

企业正从基础问答AI转向具备自主决策能力的智能系统。LangGraph框架通过有向无环图(DAG)模型,支持多步骤工作流的动态构建与执行,其核心优势在于:1)基于节点的模块化设计实现复杂业务流程编排;2)支持多跳检索,通过图遍历算法整合分散信息;3)结合符号与语义建模,构建混合知识表示;4)状态共享机制实现上下文感知推理。该系统整合LangChain工具、OpenAI函数调用和向量检索等技术,使AI代理能自主规划、检索并执行任务,推动企业AI从被动响应向主动决策演进。

2025-08-05 14:27:31 1406

原创 如何构建AI智能体:实用分步指南

本文详细介绍了构建AIagent的8个关键步骤:1)明确核心目标;2)选择合适的LLM模型;3)使用LangChain等框架统筹管理;4)接入向量数据库实现长期记忆;5)集成实用工具增强功能;6)加入RAG技术提升准确性;7)全面测试并设置安全防护;8)通过MLOps工具部署上线。指南涵盖了从目标设定到技术选型、功能开发和安全部署的全流程,为打造各类智能助手提供了系统化解决方案。随着技术进步,未来AIagent将变得更加模块化和协作化。

2025-08-04 12:51:45 670

原创 GitHub 上 Star 数最高的 8 个开源 MCP 项目

本文盘点了GitHub上8个最受欢迎的MCP开源项目,涵盖AI自动化、智能助手等核心领域。n8n(12.4万星)作为领先的自动化工具,支持500+系统集成;Dify(10.9万星)提供低代码AI应用开发;OpenWebUI(10.4万星)是开箱即用的LLM聊天界面;Netdata(7.52万星)提供实时系统监控;LobeChat(6.39万星)强调多模型支持;Glama(6.36万星)专注MCP协议聚合;RAGFlow(6.11万星)专攻RAG系统开发;AnythingLLM(4.71万星)则是全栈AI应用

2025-08-01 12:44:00 1803

原创 掌控AI工具链:用 Python + API 构建 AI MCP 服务器

本文详细指导如何使用Python和FastAPI快速构建一个轻量级的AI工具服务器(MCP),该服务器能通过自定义API(如天气查询、加密货币价格获取和电影信息检索)扩展大型语言模型的能力,并实现智能路由解析用户指令、自动调用对应接口。

2025-07-29 13:59:15 1002

原创 终结集成乱局:模型上下文协议(MCP)如何重构AI工具生态?

摘要: AI助手目前面临工具集成碎片化与高复杂度的核心挑战,如多平台API协同操作困难、接口迭代风险等。Anthropic提出的**模型上下文协议(MCP)**通过标准化工具发现、逻辑分层和安全控制,构建AI与外部服务的抽象层,使模型专注业务目标而非技术细节。MCP通过客户端-服务器-服务商的三层架构,实现动态工具检索、版本化API描述和变更隔离,降低开发复杂度。尽管面临厂商支持不足等现实约束,MCP为AI工具生态的统一提供了首个工程化框架,有望推动企业级智能代理的规模化部署。(149字) 关键词: AI工

2025-07-28 13:47:36 1181

原创 告别RAG:构建基于搜索的轻量级问答AI助手

摘要:随着AI技术进步,检索增强生成(RAG)技术的地位正在改变。2025年,新一代AI模型如Gemini已具备超长文本处理能力,使得"搜索工具+长文本AI"的组合成为更简单、廉价且高效的替代方案。相比RAG的复杂基础设施(向量数据库、文档拆分等),新方案直接访问原始数据源,利用成熟搜索引擎和AI的大上下文窗口,显著降低了维护成本。文章详细对比了两种技术的优劣,并提供了构建搜索优先问答助手的实践指南,强调在大多数场景下,简单直接的搜索方案已能提供更好效果。RAG仅适用于超大规模数据或特殊

2025-07-17 13:12:39 1038

原创 AI代理构建:如何选择最佳框架?

构建AI代理面临框架选择的复杂性,需要具备感知、规划、行动和学习四大能力。主流框架可分为四类:无代码工具(如Flowise)、代码优先框架(如CrewAI)、垂直专用工具(如UFO)和生态系统方案(如LangChain)。2025年新兴框架将聚焦复杂任务管理和安全防护。实际应用中,组合使用多种框架(如n8n+CrewAI+LangGraph)是当前最优解,企业级场景需重点关注可观测架构。随着技术发展,AI代理框架正从提示词工程向系统性解决方案演进。

2025-07-11 13:00:53 1159

原创 AI红利:抢先掌握这9项AI技能,不做掉队者!

AI红利时代:普通人也能掌握的9大颠覆性技能 AI技术浪潮不再是技术专家的专属领域。本文揭示了9个零基础也能快速上手的AI应用技能,包括: 提示工程 - 与AI高效沟通的艺术 无代码开发 - 用AI构建应用原型 智能设计 - 文字指令生成专业作品 视频剪辑 - AI自动优化制作流程 内容创作 - AI辅助思想表达 全平台营销 - 单次创作多平台分发 工作流自动化 - 告别重复性劳动 数据分析 - 自然语言获取商业洞见 数字员工 - 创建24小时工作的AI智能体 关键在于:选择感兴趣的方向,快速实践,将AI转

2025-07-10 13:06:16 840

原创 Meta重磅质疑:AI的发展路线可能从一开始就错了?

简单来说,它模仿了人脑的“主动推理(Active Inference)”机制。我们的大脑会在内部构建一个关于外部世界的“内部模型”,这个模型帮助我们预测现实世界接下来会发生什么。正是这种能力,让人类得以在一个持续变化、复杂且信息不全的世界中生存繁衍。Meta首席科学家Yann LeCun指出,他们想为机器打造一个“常识引擎(Common-Sense Engine)

2025-07-09 09:58:10 900

原创 OGRE 3D----7. 背景图片渲染实现详解

本文详细介绍了在Ogre3D引擎中实现背景图片渲染的技术方案。通过渲染队列机制(RENDER_QUEUE_BACKGROUND)控制渲染顺序,使用单位矩阵(setUseIdentityProjection/setUseIdentityView)确保背景不受相机变换影响,并设置无限包围盒(BOX_INFINITE)保证背景始终显示。实现过程包括:创建手动对象构建背景矩形、配置材质系统(含顶点/片段着色器)、优化纹理加载和材质缓存。该方案采用模块化设计,将节点管理、材质管理和视图控制分离,具有扩展性强、性能优化

2025-07-08 09:24:59 136

原创 AI 泡沫揭秘:科技巨头们的“烧钱魔术”与增长幻梦

这些触目惊心的数字,既揭示了AI商业模式的脆弱性,也展现了巨头们令人“叹为观止”的数字戏法功力。这些戏法足以让泡沫继续膨胀数月乃至数年。可悲的是,代价将由我们承担:轻信“增长故事”的老板们会解雇有才华的员工,代之以笨拙的聊天机器人。这些“数字劳工”将像潜伏在墙体内的石棉一样,长期存在于我们的高科技文明中,带来难以预见的隐患。泡沫终会破灭,但在此之前,这场昂贵的“增长幻梦”仍会继续上演。

2025-07-07 13:50:19 1015

原创 2026年前将被人工智能彻底颠覆的5大行业

摘要:AI正快速取代特定行业岗位,五个高危领域包括:1) 法律行业(合同审查等基础法律工作被AI平台取代);2) 会计金融(AI处理财务报告、审计等工作);3) 医疗行政(保险理赔、医疗编码等重复性工作);4) 客户支持(聊天机器人取代人工客服);5) 常规内容创作(AI生成文案、报告等)。数据显示,2025年已有7万多岗位因此消失。专家建议从业者需转型学习AI工具,培养不可替代的人类技能,否则将被更高效、低成本的AI取代。这场职场变革已悄然开始。

2025-07-04 09:08:50 1831

原创 OpenGL----透明度渲染-2:双向深度剥离 - 实现篇

本文详细解析了在OpenGL中实现双向深度剥离(DualDepthPeeling)技术的完整过程。该技术通过创新的Ping-Pong缓冲机制和多重渲染目标,实现了高效的多层透明物体渲染。文章从核心架构设计、数据结构、着色器实现到完整渲染流程,系统地介绍了关键技术要点,包括: 采用7个颜色附件的FBO布局,实现深度信息和颜色数据的分离存储 使用RG32F纹理格式巧妙编码前后深度边界 通过Ping-Pong缓冲技术解决读写冲突问题 四分支处理逻辑的片段着色器设计 基于遮挡查询的性能优化策略 通过完整的代码实现和

2025-07-04 08:22:26 125

原创 OpenGL----透明度渲染-2:双向深度剥离 - 基本原理篇

摘要:DualDepthPeeling是一种高效解决透明物体渲染顺序问题的技术。相比传统DepthPeeling每次仅剥离一层,该技术通过双向剥离机制同时处理前后两层,大幅减少渲染遍数。其核心采用Ping-Pong缓冲机制和7个颜色附件架构,利用滑动窗口概念避免重复处理中间层。实验表明,该技术能在3遍渲染中完成传统方法需5遍处理的5层透明场景,显著提升性能,为复杂透明场景渲染提供了可靠解决方案。

2025-06-27 08:46:14 156

原创 OpenGL----透明度渲染-1:传统Alpha混合

摘要: 透明度渲染是现代计算机图形学中的关键技术,但其顺序依赖特性(Alpha混合的非交换性)导致复杂场景中出现视觉伪影。本文通过代码示例展示了三个半透明球体相互穿插时的渲染问题:当视角变化时,球体颜色会因深度排序临界点突变而产生不自然的"跳跃"效果。这种问题源于传统渲染方法无法正确处理重叠透明表面的顺序。文章详细分析了Alpha混合的数学原理和局限性,包括几何交叉、动态场景排序开销等问题,并探讨了顺序无关透明度(OIT)等解决方案的发展方向,为高质量透明渲染提供了技术参考。

2025-06-26 08:53:43 202

原创 OpenGL----OpenGL纹理与纹理缓存区

纹理(Texture)在计算机图形学中是指应用于几何体表面的图像或图案,用于增加视觉细节和真实感。纹理对象:在OpenGL中,纹理是通过纹理对象(Texture Object)来管理的。纹理对象存储了纹理图像数据以及相关的参数设置。纹理类型1D纹理):一维纹理,通常用于线性渐变等效果。2D纹理):二维纹理,最常见的纹理类型,用于贴图到二维表面。3D纹理):三维纹理,用于体积渲染等。立方体贴图):用于环境映射和反射效果。纹理坐标。

2025-04-28 09:38:28 331

原创 OGRE 3D----6. OGRE中使用自定义GLSL代码渲染

OGRE(Object-Oriented Graphics Rendering Engine)是一个灵活且高效的3D渲染引擎,广泛应用于游戏开发和其他图形应用中。为了充分利用现代GPU的强大功能,开发者可以使用GLSL(OpenGL Shading Language)编写自定义着色器,从而实现复杂的视觉效果。在这篇文章中,我将详细介绍如何在OGRE中使用自定义的GLSL代码进行渲染。

2024-11-28 08:44:32 501

原创 OGRE 3D----5. OGRE和QML事件交互

在现代图形应用程序开发中,OGRE(Object-Oriented Graphics Rendering Engine)作为一个高性能的3D渲染引擎,广泛应用于游戏开发、虚拟现实和仿真等领域。而QML(Qt Modeling Language)则是Qt框架中的一种声明式语言,专注于设计用户界面。将OGRE与QML结合,可以充分利用OGRE的强大渲染能力和QML的灵活界面设计,实现复杂的3D图形应用。通过本文的讲解,读者将能够掌握OGRE和QML的集成技术,提升3D图形应用的开发效率和用户体验。

2024-11-28 08:43:23 741

原创 OGRE 3D----4. OGRE和QML共享opengl上下文

在现代图形应用开发中,OGRE(Object-Oriented Graphics Rendering Engine)和QML(Qt Modeling Language)都是非常流行的工具。OGRE提供了强大的3D渲染能力,而QML则用于构建灵活的用户界面。在某些应用场景中,我们需要在同一个应用程序中同时使用OGRE和QML,并且共享OpenGL上下文,以便在同一个窗口中渲染3D内容和用户界面。本文将介绍如何在OGRE和QML之间共享OpenGL上下文,并提供详细的实现步骤。

2024-11-28 08:43:02 793

原创 OGRE 3D----3. OGRE绘制自定义模型

在使用OGRE进行开发时,绘制自定义模型是一个常见的需求。本文将介绍如何使用OGRE的ManualObject类来创建和绘制自定义模型。通过ManualObject,开发者可以直接定义顶点、法线、纹理坐标等,从而灵活地构建各种复杂的几何体。

2024-11-28 08:42:26 859

原创 OGRE 3D----2. QGRE + QQuickView

将 OGRE(面向对象图形渲染引擎)集成到使用 QQuickView 的 Qt Quick 应用程序中,可以在现代灵活的 UI 框架中提供强大的 3D 渲染功能。本文将指导您如何在 QQuickView 环境中设置 OGRE。

2024-11-28 08:42:10 807

原创 OGRE 3D----1. 创建第一个OGRE 3D示例

OGRE (Object-Oriented Graphics Rendering Engine) 是一个开源的、高级的 3D 图形渲染引擎,它提供了一个抽象层,使得开发者可以专注于创建内容和逻辑,而不必深入底层的图形硬件接口。OGRE 由 C++ 编写,但它支持多种语言绑定,包括 Python 和 .NET 语言。它是跨平台的,支持 Windows、Linux、macOS 等操作系统。主要特性场景管理:OGRE 提供了多种场景管理策略,包括八叉树、BSP(二叉空间分割)等,以高效地管理和渲染3D场景。

2024-09-06 16:45:09 1634

原创 QML----QML+VTK+CMake示例

这个类是VTK和Qt Quick之间的桥梁,使得在现代的Qt应用程序中可以方便地使用VTK的强大3D图形和可视化功能。这样做的好处是简化了资源的部署和访问,因为所有的资源都被包含在单个可执行文件中,而不是分散在文件系统的不同位置。从上面的代码可以看到创建VTK交互的方式与标准VTK示例的方式是一样的,这一点能很方便,因为我们只需要完成QML界面和VTK的集成,后续所有3D的操作,都可以按VTK的方式来处理。这个示例提供了一个基本的框架,展示了如何在使用QML的应用程序中集成VTK渲染。

2024-08-22 08:40:22 724 3

解析cps3数据之后转换为的二进制文件

cps3是一种地质软件中常见的层面数据,记录的是地层结构的坐标点信息。基于该数据,可以实现地层结构的可视化展示。 cp3原始数据是Ascii编码的,包含敏感的明文坐标信息,所以为了脱敏,我将数据进行了解析存为了二进制的文件,M11.surface就是转换之后保存的二级制文件。

2024-02-20

gloox-0.9.9.12

用vs2010编译好的gloox动态库,可以结合我的博客文章进行C++的即时通信开发

2014-08-07

从零开始学习VTK.pdf

该文档为本人自己整理的VTK学习文档,从零开始学习VTK,绘制各种VTK对象。文中内容与 https://blog.csdn.net/charce_you 的博客文章内容一致。

2019-07-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除