从Google搜索算法PageRank谈马尔科夫链(Markov)

原创 2016年06月01日 10:57:13

Google的搜索引擎是基于什么?他的算法为什么比较高效?我想还是会有人对此敢兴趣吧。

Google的搜索算法PageRank是Google创始人拉里·佩奇和谢尔盖·布林于1997年构建早期的搜索系统原型时提出的链接分析算法。
已经有很多关于PageRank的介绍,这里就不再赘述。
这里介绍的是PageRank所基于的数学原理-Markov链。
可以先看下PageRank:

PageRank是基于【从许多优质网页链接过来的网页,必定还是优质网页】的回归关系,来判定所有网页的重要性。
其有三个指标:
- 反向连接数;
- 反向链接是否来自推荐度高的网页;
- 反向链接源的页面链接数。


Markov性


A={Sn0=i0,,Snk1=ik1} ——过去

B={Sk=i} ——现在

C={Sk+1=j} ——未来


P(C|AB)=P(C|B)——已知过去到现在的信息来预测未来,则与现在状态有关,与过去状态无关。

深入探讨PageRank(二):PageRank原理剖析

深入探讨PageRank(二):PageRank原理剖析 关于PageRank的基础知识简介请参见博文:《深入探讨PageRank(一):PageRank算法原理入门》。 一、PageRank算法的简...

马尔科夫链markov chains

  • 2011年12月28日 19:23
  • 412KB
  • 下载

利用吸收态马尔科夫链进行基于超像素分割的目标跟踪【Superpixel-based Tracking-by-Segmentation using Markov Chains】

利用吸收态马尔科夫链进行基于超像素分割的目标跟踪【Superpixel-based Tracking-by-Segmentation using Markov Chains】...

马尔科夫逻辑网络(Markov logic network)

1 introduction             马尔科夫逻辑网络是将马尔科夫网络与一阶逻辑相结合的一种全新的统计关系学习模型,在自然语言处理、复杂网络、信息抽取等领域都有重要的应用前景。本文将简...

隐马尔科夫模型(Hidden Markov Models) 系列之三

 介绍(introduction)生成模式(Generating Patterns)隐含模式(Hidden Patterns)隐马尔科夫模型(Hidden Markov Models)前向算法(For...
  • eaglex
  • eaglex
  • 2011年05月13日 20:54
  • 6362

隐马尔科夫模型(HIDDEN MARKOV MODEL)

1.0  问题的提出 假设有一个房间,一个人在房间里投掷硬币,你在房间的外面,只能看见结果,例如:TTHTHHTT(T代表反面,H代表正面),这个结果被称为观察序列,但是你却不知道房间里的人是一直在投...

隐马尔科夫模型(Hidden Markov Model,HMM)

隐含状态(骰子)之间存在转换概率(transition probability) 隐含状态和可见状态之间有一个概率叫做输出概率(emission probability) (1)问题1...

隐马尔科夫模型(Hidden Markov Models)

隐马尔科夫模型HMM(Hidden Markov Models)来源于现实社会的需求,它是为人们服务的,我们通常都习惯于寻找一个事物在一段时间内的变化规律,并能在特定情况下预测下一变化,比如预测天气等...

平差的理解及一种最简单的高斯马尔科夫模型(Gauss Markov Model)

本博客试图用一些最直观,形象,具体实例的方式解释相关概念首先,平差(英文中一般叫Adjustment)对于测绘专业的人来说是一个熟悉的不能在熟悉的名词了。还记得当年被间接平差,条件平差虐的一脸懵逼的样...

隐马尔科夫模型(Hidden Markov Models) 系列之五

 介绍(introduction)生成模式(Generating Patterns)隐含模式(Hidden Patterns)隐马尔科夫模型(Hidden Markov Models)前向算法(For...
  • eaglex
  • eaglex
  • 2011年06月01日 09:24
  • 6822
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:从Google搜索算法PageRank谈马尔科夫链(Markov)
举报原因:
原因补充:

(最多只允许输入30个字)