关闭

EM算法训练GMM的Matlab实现过程(总结)

标签: 算法matlabfunction优化
20321人阅读 评论(91) 收藏 举报
分类:

         最近看到论文中很多地方提到EM算法,之前对EM算法只是大概知道是一个参数优化算法,而不知道具体的过程,通过阅读相关的资料,大概了解了其推导过程以及实现过程。

   GMM模型就是由若干个高斯分量相互组成的,通过混合的高斯模型来逼近样本的真实分布。

        GMM模型估计包括三个参数:混合权重,每个高斯函数的均值以及方差,他们的递推公式如下:

                 权重的递推公式如下:

          

            均值和方差的递推公式如下:

          

 

 

 

其中M为混合高斯数,n为训练的样本数

假设现在有训练样本data集合,每一列为一个样本,行数代表样本的特征维数,采用Matlab实现EM算法的训练过程如下:

 

%演示EM训练算法的实现过程
clc;
clear all;
load data;
[dim,Num]=size(data);
max_iter=10;%最大迭代次数
min_improve=1e-4;% 提升的精度
Ngauss=3;%混合高斯函数个数
Pw=zeros(1,Ngauss);%保存权重
mu= zeros(dim,Ngauss);%保存每个高斯分类的均值,每一列为一个高斯分量
sigma= zeros(dim,dim,Ngauss);%保存高斯分类的协方差矩阵
fprintf('采用K均值算法对各个高斯分量进行初始化\n');
[cost,cm,cv,cc,cs,map] = vq_flat(data, Ngauss);%聚类过程  map:样本所对应的聚类中心
mu=cm;%均值初始化
for j=1:Ngauss
   gauss_labels=find(map==j);%找出每个类对应的标签
   Pw(j)= length(gauss_labels)/length(map);%类别为1的样本个数占总样本的个数 
   sigma(:,:,j)  = diag(std(data(:,gauss_labels),0,2)); %求行向量的方差,只取对角线,其他特征独立,并将其赋值给对角线
end

last_loglik = -Inf;%上次的概率
% 采用EM算法估计GMM的各个参数
if Ngauss==1,%一个高斯函数不需要用EM进行估计
    sigma(:,:,1)  = sqrtm(cov(data',1));
    mu(:,1)       = mean(data,2);
else
     sigma_i  = squeeze(sigma(:,:,:));
     
     iter= 0;
     for iter = 1:max_iter
          %E 步骤
          %求每一样样本对应于GMM函数的输出以及每个高斯分量的输出,
          sigma_old=sigma_i;
          %E步骤。。。。。
          for i=1:Ngauss
          P(:,i)= Pw(i) * p_single(data, squeeze(mu(:,i)), squeeze(sigma_i(:,:,i)));%每一个样本对应每一个高斯分量的输出
          end
          s=sum(P,2);%
        for j=1:Num
            P(j,:)=P(j,:)/s(j);
        end
       %%%Max步骤
        Pw(1:Ngauss) = 1/Num*sum(P);%权重的估计
        %均值的估计
        for i=1:Ngauss
            sum1=0;
            for j=1:Num
             sum1=sum1+P(j,i).*data(:,j);
            end
          mu(:,i)=sum1./sum(P(:,i));
        end
       
        %方差估计按照公式类似
         %sigma_i
         if((sum(sum(sum(abs(sigma_i- sigma_old))))<min_improve))
             break;
        end
        
        
     end
    
     
end


子函数:

function p = p_single(x, mu, sigma)

%返回高斯函数的值

 [dim,N]=size(x);
 p=zeros(1,N);
 for i=1:N
     p(i)= 1/(2*pi*abs(det(sigma)))^(length(mu)/2)*exp(-0.5*(x(:,i)-mu)'*inv(sigma)*(x(:,i)-mu));
 end


 

 

注明:鉴于大家都要求vq_flat代码,这里就不一一发送到邮箱了,提供下载地http://download.csdn.net/detail/xiaoding133/5501211

1
1

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:612840次
    • 积分:7345
    • 等级:
    • 排名:第3098名
    • 原创:159篇
    • 转载:59篇
    • 译文:6篇
    • 评论:221条
    最新评论
    C++ Useful Resources