EM算法训练GMM的Matlab实现过程(总结)

原创 2012年03月22日 17:33:56

         最近看到论文中很多地方提到EM算法,之前对EM算法只是大概知道是一个参数优化算法,而不知道具体的过程,通过阅读相关的资料,大概了解了其推导过程以及实现过程。

   GMM模型就是由若干个高斯分量相互组成的,通过混合的高斯模型来逼近样本的真实分布。

        GMM模型估计包括三个参数:混合权重,每个高斯函数的均值以及方差,他们的递推公式如下:

                 权重的递推公式如下:

          

            均值和方差的递推公式如下:

          

 

 

 

其中M为混合高斯数,n为训练的样本数

假设现在有训练样本data集合,每一列为一个样本,行数代表样本的特征维数,采用Matlab实现EM算法的训练过程如下:

 

%演示EM训练算法的实现过程
clc;
clear all;
load data;
[dim,Num]=size(data);
max_iter=10;%最大迭代次数
min_improve=1e-4;% 提升的精度
Ngauss=3;%混合高斯函数个数
Pw=zeros(1,Ngauss);%保存权重
mu= zeros(dim,Ngauss);%保存每个高斯分类的均值,每一列为一个高斯分量
sigma= zeros(dim,dim,Ngauss);%保存高斯分类的协方差矩阵
fprintf('采用K均值算法对各个高斯分量进行初始化\n');
[cost,cm,cv,cc,cs,map] = vq_flat(data, Ngauss);%聚类过程  map:样本所对应的聚类中心
mu=cm;%均值初始化
for j=1:Ngauss
   gauss_labels=find(map==j);%找出每个类对应的标签
   Pw(j)= length(gauss_labels)/length(map);%类别为1的样本个数占总样本的个数 
   sigma(:,:,j)  = diag(std(data(:,gauss_labels),0,2)); %求行向量的方差,只取对角线,其他特征独立,并将其赋值给对角线
end

last_loglik = -Inf;%上次的概率
% 采用EM算法估计GMM的各个参数
if Ngauss==1,%一个高斯函数不需要用EM进行估计
    sigma(:,:,1)  = sqrtm(cov(data',1));
    mu(:,1)       = mean(data,2);
else
     sigma_i  = squeeze(sigma(:,:,:));
     
     iter= 0;
     for iter = 1:max_iter
          %E 步骤
          %求每一样样本对应于GMM函数的输出以及每个高斯分量的输出,
          sigma_old=sigma_i;
          %E步骤。。。。。
          for i=1:Ngauss
          P(:,i)= Pw(i) * p_single(data, squeeze(mu(:,i)), squeeze(sigma_i(:,:,i)));%每一个样本对应每一个高斯分量的输出
          end
          s=sum(P,2);%
        for j=1:Num
            P(j,:)=P(j,:)/s(j);
        end
       %%%Max步骤
        Pw(1:Ngauss) = 1/Num*sum(P);%权重的估计
        %均值的估计
        for i=1:Ngauss
            sum1=0;
            for j=1:Num
             sum1=sum1+P(j,i).*data(:,j);
            end
          mu(:,i)=sum1./sum(P(:,i));
        end
       
        %方差估计按照公式类似
         %sigma_i
         if((sum(sum(sum(abs(sigma_i- sigma_old))))<min_improve))
             break;
        end
        
        
     end
    
     
end


子函数:

function p = p_single(x, mu, sigma)

%返回高斯函数的值

 [dim,N]=size(x);
 p=zeros(1,N);
 for i=1:N
     p(i)= 1/(2*pi*abs(det(sigma)))^(length(mu)/2)*exp(-0.5*(x(:,i)-mu)'*inv(sigma)*(x(:,i)-mu));
 end


 

 

注明:鉴于大家都要求vq_flat代码,这里就不一一发送到邮箱了,提供下载地http://download.csdn.net/detail/xiaoding133/5501211

相关文章推荐

Kmeans和GMM参数学习的EM算法原理和Matlab实现

本文整理自JerryLead的博文“《K-means聚类算法》 ”,“《(EM算法)The EM Algorithm 》”,“《混合高斯模型(Mixtures of Gaussians)和EM算法 》...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

GMM的EM算法实现

在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

EM方法解高斯混合模型(GMM)Matlab实现

背景:PRML 第9章  9.2Mixtures of Gaussians 中算法实现 function model = gmmEM(data,K,option) % % K 为model...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Matlab计算机视觉工具箱

http://blog.csdn.net/zy122121cs/article/details/44947355 转自:http://cvnote.info/matlab-cv-ip-too...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:EM算法训练GMM的Matlab实现过程(总结)
举报原因:
原因补充:

(最多只允许输入30个字)