【OpenCV】基于Adaboost和Haar-like特征人脸识别

本文介绍了OpenCV中的人脸检测算法,该算法基于Adaboost和Haar-like特征,称为Viola-Jones检测器。Haar-like特征通过矩形的灰度积分来表示,Adaboost算法则用于构建级联分类器,减少非人脸样本的误判。级联分类器由简单到复杂的节点构成,以提高检测率和降低拒绝率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

毕设算是告一段落,里面用了一点点人脸识别,其实完全是OpenCV自带的,源自两篇论文:

P. Viola and M. Jones.  Rapid object detection using a boosted cascade of simple features.
R. Lienhart and J. Maydt.  An Extended Set of Haar-like Features for Rapid Object Detection.

转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7670703

Paul Viola 和Miachael Jones等利用Adaboost算法构造了人脸检测器,称为Viola-Jones检测器,取得很好的效果。之后Rainer Lienhart和Jochen Maydt用对角特征,即Haar-like特征对检测器进行扩展。OpenCV中自带的人脸检测算法即基于此检测器,称为“Haar分类器”。

Haar-like特征可由下图表示:


每个特征由2~3个矩形组成,在这些小波示意图中,浅色区域表示“累加数据”,深色区域表示“减去该区域的数据”。分别检测边界、线、中心特征,这些特征可表示为:

评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值