这个世界有病,我们都有病

这个世界有病,我们都有病

— 这个世界有病,我们都有病

<别扭症>

我们都有病,这个病很严重,它导致了我们不必要的误会。

它铸就了一句话“和爱的人吵架,和陌生人说心里话。”


我们都是别扭的孩子,为了不该在意的东西,失去了我们在意的东西。


明明很爱,却要天天吵架,不肯真诚一点。

明明很喜欢,脱口而出的却是不稀罕。

明明很感谢,却无法将这些感谢说出口,怕别人觉得矫情。

明明很感动,却装作什么都没发生,自以为自己这是淡定。

明明是自己的错,却自以为心知肚明就好,不需要认错。

明明自己很难受,却硬说自己很好,然后强颜欢笑,告诉他们自己很好。

明明很想挽回什么,却什么都不敢做,还说,就这样吧。

明明很在意的东西,我们嘴上却说不在意。

明明是自己的错,却自以为心知肚明就好,不需要认错。

。。。。。。

明明自己就是别扭的小孩,却认为自己成熟的给大人一样,认为自己是对的。

所以,请爱这群别扭小孩的人,原谅他们说的不在乎,因为他们说不在乎的,都是他们最最在乎的,他们说不爱的,都是他们爱的。


我们在这个世界,都是别扭的小孩,什么都不说。你不说他们怎么知道你有多在乎他们。所以很多事情,不要等失去才知道珍惜,有些东西,丢掉了就,就再也找不回了。

他们把你丢掉,不是不爱你,而是因为你不会表达,而是因为你不懂珍惜。亲爱的,不要说真正懂你的人不需要过多的话,因为你要学会真诚,他们才会觉得温暖。


所以,不要当那个别扭的小孩,我们都可以真诚一点。

一句“我爱你”“喜欢你”“谢谢你”“我在乎”“我难受”“对不起”

真的有那么难么?好好问问自己。

再多也不过是三个字的音节。

可是它挽回的,或许是你一生都不能失去的。

它带给你的,是一个感谢,一个拥抱,甚至是你更想要的东西。

它带给别人的,是一个温暖。


别扭的小孩,要学会痊愈。

如果你愿意,这个别扭症。终有有日会痊愈。

如果自己真的是别扭体,那么请告诉那些爱你的人:伤感日志

原谅我说的不在乎,原谅我说的不爱,原谅我的不礼貌,原谅我的不领情。

因为,我是别扭的小孩。

这个世界有病,我们都有病

相关的主题文章:

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值