自适应辛普森法

本文详细介绍了自适应辛普森法的概念,通过解析算法原理,解释了如何使用辛普森公式近似求解定积分。文章引用了相关资料和实例,探讨了算法中的修正策略和细分原则,旨在帮助读者深入理解辛普森法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法简介以及模板可以在大白书P166~P170页找到,本篇文章主要帮助理解。


首先上一个资料,我就是看这个弄懂的。

http://wenku.baidu.com/link?url=w3VyU2KW8DXFkEgipi-2hjruxvi-XXMXMEWhb8vnuslIQ-ycsa-ESt0S3sIeHQ5l_DUAq7PZ-MOVkwaW815iPsPfqNXfRgRlCJBajtwJR3u

书上例题的解题报告

http://blog.csdn.net/xl2015190026/article/details/53516642


看大白书P169上的图 2-37

上面有一个公式∫f(x)dx=(Δx/3)*(y0+4*y1+y2)+(Δx/3)*(y2+4*y3+y4)+...+(Δx/3)*(yn-2+4*yn-1+yn)

这就是辛普森公式,其中(Δx/3)*(y0+4*y1+y2)算的是[x0,x2]的曲线下面积,其他同理,全部求和以后就是[a,b]的曲线下面积,也就是函数的定积分。这种方法不需要求出原函数,因此可以用来求积不出来的函数的定积分。


那为什么[x0,x2]的曲线下面积可以近似等于(Δx/3)*(y0+4*y1+y2)呢?

其实不过是将[x0,x2]的曲线用一个过(x0,y0),(x1,y1),(x2,y2)的抛物线近似替代,然后再用最基础的定积分求出此抛物线的定积分,并将之当成近似解罢了。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值