第十二届湖南省赛--三角形和矩形

原创 2016年08月31日 11:45:47

Bobo 有一个三角形和一个矩形,他想求他们交的面积。 具体地,三角形和矩形由 8 个整数 x1,y1,x2,y2,x3,y3,x4,y4 描述。表示三角形的顶点坐标是 (x1,y1),(x1,y2),(x2,y1),矩形的顶点坐标是 (x3,y3),(x3,y4),(x4,y4),(x4,x3).
输入
输入包含不超过 30000 组数据。 每组数据的第一行包含 4 个整数 x1,y1,x2,y2 (x1 ̸= x2,y1 ̸= y2). 第二行包含 4 个整数 x3,y3,x4,y4 (x3 < x4,y3 < y4). (0≤ xi,yi ≤104)
输出
对于每组数据,输出一个实数表示交的面积。绝对误差或相对误差小于 10−6 即认为正确。
样例输入
1 1 3 3 0 0 2 2 0 3 3 1 0 0 2 2 4462 1420 2060 2969 4159 257 8787 2970
样例输出
1.00000000 0.75000000 439744.13967527

(这个题要打下自己脸,窝比赛前一天准备了板子,却没能正确的使用,orz。自罚十题)

直接套多边形面积交的模板,也可以直接半平面交,注意向量的方向。
用三角划分的办法求多边形面积交。

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<queue>
#include<map>
#include<stack>
#include<set>

using namespace std;

const int maxn=555;
const int maxisn=10;
const double eps=1e-8;
const double pi=acos(-1.0);

int dcmp(double x){
    if(x>eps) return 1;
    return x<-eps ? -1 : 0;
}
inline double Sqr(double x){
    return x*x;
}
struct Point{
    double x,y;
    Point(){x=y=0;}
    Point(double x,double y):x(x),y(y){};
    friend Point operator + (const Point &a,const Point &b) {
        return Point(a.x+b.x,a.y+b.y);
    }
    friend Point operator - (const Point &a,const Point &b) {
        return Point(a.x-b.x,a.y-b.y);
    }
    friend bool operator == (const Point &a,const Point &b) {
        return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
    }
    friend Point operator * (const Point &a,const double &b) {
        return Point(a.x*b,a.y*b);
    }
    friend Point operator * (const double &a,const Point &b) {
        return Point(a*b.x,a*b.y);
    }
    friend Point operator / (const Point &a,const double &b) {
        return Point(a.x/b,a.y/b);
    }
    friend bool operator < (const Point &a, const Point &b) {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    inline double dot(const Point &b)const{
        return x*b.x+y*b.y;
    }
    inline double cross(const Point &b,const Point &c)const{
        return (b.x-x)*(c.y-y)-(c.x-x)*(b.y-y);
    }

};

Point LineCross(const Point &a,const Point &b,const Point &c,const Point &d){
    double u=a.cross(b,c),v=b.cross(a,d);
    return Point((c.x*v+d.x*u)/(u+v),(c.y*v+d.y*u)/(u+v));
}
double PolygonArea(Point p[],int n){
     if(n<3) return 0.0;
     double s=p[0].y*(p[n-1].x-p[1].x);
     p[n]=p[0];
     for(int i=1;i<n;i++){
        s+=p[i].y*(p[i-1].x-p[i+1].x);
     }
     return fabs(s*0.5);
}
double CPIA(Point a[],Point b[],int na,int nb){
    Point p[maxisn],temp[maxisn];
    int i,j,tn,sflag,eflag;
    a[na]=a[0],b[nb]=b[0];
    memcpy(p,b,sizeof(Point)*(nb+1));
    for(i=0;i<na&&nb>2;++i){
        sflag=dcmp(a[i].cross(a[i+1],p[0]));
        for(j=tn=0;j<nb;++j,sflag=eflag){
            if(sflag>=0) temp[tn++]=p[j];
            eflag=dcmp(a[i].cross(a[i+1],p[j+1]));
            if((sflag^eflag)==-2)
                temp[tn++]=LineCross(a[i],a[i+1],p[j],p[j+1]);
        }
        memcpy(p,temp,sizeof(Point)*tn);
        nb=tn,p[nb]=p[0];
    }
    if(nb<3) return 0.0;
    return PolygonArea(p,nb);
}
double SPIA(Point a[],Point b[],int na,int nb){
    int i,j;
    Point t1[4],t2[4];
    double res=0.0,if_clock_t1,if_clock_t2;
    a[na]=t1[0]=a[0];
    b[nb]=t2[0]=b[0];
    for(i=2;i<na;i++){
        t1[1]=a[i-1],t1[2]=a[i];
        if_clock_t1=dcmp(t1[0].cross(t1[1],t1[2]));
        if(if_clock_t1<0) swap(t1[1],t1[2]);
        for(j=2;j<nb;j++){
            t2[1]=b[j-1],t2[2]=b[j];
            if_clock_t2=dcmp(t2[0].cross(t2[1],t2[2]));
            if(if_clock_t2<0) swap(t2[1],t2[2]);
            res+=CPIA(t1,t2,3,3)*if_clock_t1*if_clock_t2;
        }
    }
    return res;//面积交
    //return PolygonArea(a,na)+PolygonArea(b,nb)-res;//面积并
}

Point a[222],b[222];
Point aa[222],bb[222];

int main(){


    double x1,y1,x2,y2;
    double x3,y3,x4,y4;
    while(scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2)!=EOF){
        scanf("%lf %lf %lf %lf",&x3,&y3,&x4,&y4);
        a[0]=Point(x1,y1);
        a[1]=Point(x2,y1);
        a[2]=Point(x1,y2);

        b[0]=Point(x3,y3);
        b[1]=Point(x4,y3);
        b[2]=Point(x4,y4);
        b[3]=Point(x3,y4);

        printf("%.8f\n",fabs(SPIA(a,b,3,4)));
        //printf("%.8f\n",ConvexPolygonArea(out,m));
    }
    return 0;
}
/*
1 1 3 3
0 0 2 2
0 3 3 1
0 0 2 2
4462 1420 2060 2969
4159 257 8787 2970
*/

半平面交

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<queue>
#include<deque>
#include<map>
#include<stack>
#include<set>
#include<complex>
#define e exp(1.0); //2.718281828
#define mod 1000000007
#define inf 0x3f3f3f3f
typedef long long LL;
#define INF 0x7fffffff
using namespace std;

#define zero(x) (((x)>0?(x):(-x))<eps)
const double eps=1e-8;
const double pi=acos(-1.0);

//判断数k的符号 -1负数 1正数 0零
int dcmp(double k) {
    return k<-eps?-1:k>eps?1:0;
}

inline double sqr(double x) {
    return x*x;
}
struct point {
    double x,y;
    point() {};
    point(double a,double b):x(a),y(b) {};
    void input() {
        scanf("%lf %lf",&x,&y);
    }
    friend point operator + (const point &a,const point &b) {
        return point(a.x+b.x,a.y+b.y);
    }
    friend point operator - (const point &a,const point &b) {
        return point(a.x-b.x,a.y-b.y);
    }
    friend bool operator == (const point &a,const point &b) {
        return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
    }
    friend bool operator < (const point &a, const point &b) {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    friend point operator * (const point &a,const double &b) {
        return point(a.x*b,a.y*b);
    }
    friend point operator * (const double &a,const point &b) {
        return point(a*b.x,a*b.y);
    }
    double norm() {
        return sqrt(sqr(x)+sqr(y));
    }
};
//计算两个向量的叉积
double cross(const point &a,const point &b) {
    return a.x*b.y-a.y*b.x;
}
double cross3(point A,point B,point C) { //叉乘
    return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
}
//计算两个点的点积
double dot(const point &a,const point &b) {
    return a.x*b.x+a.y*b.y;
}
double dot3(point A,point B,point C) { //点乘
    return (C.x-A.x)*(B.x-A.x)+(C.y-A.y)*(B.y-A.y);
}

//求n边形的面积,多边形上的点要按逆时针的顺序存储在p中
double ConvexPolygonArea(point *p, int n) {
    double area = 0;
    for(int i=1; i<n-1; ++i)
        area += cross(p[i] - p[0], p[i+1] - p[0]);
    return area / 2;
}

//typedef complex<double> point;
//typedef pair<point,point> halfplane;

struct halfplane{
    point a,b;
    halfplane(){};
    halfplane(point a,point b):a(a),b(b){};
};

inline double satisfy(point a,halfplane p){
    return dcmp(cross(a-p.a,p.b-p.a))<=0;
}
point crosspoint(const halfplane &a,const halfplane &b){
    double k=cross(b.a-b.b,a.a-b.b);
    k=k/(k-cross(b.a-b.b,a.b-b.b));
    return a.a+(a.b-a.a)*(k);
}
double arg(point p){
    return arg(complex<double>(p.x,p.y));
}
bool cmp(const halfplane &a,const halfplane &b){
    int res=dcmp(arg(a.b-a.a)-arg(b.b-b.a));
    return res==0? satisfy(a.a,b):res<0;
}
int halfplaneIntersection(halfplane *v,int n,point *out){
    //sort(v.begin(),v.end(),cmp);
    sort(v,v+n,cmp);
    deque<halfplane> q;
    deque<point> ans;
    q.push_back(v[0]);
    for(int i=1;i<n;++i){
        if(dcmp(arg(v[i].b-v[i].a)-arg(v[i-1].b-v[i-1].a))==0){
            continue;
        }
        while(ans.size()>0&&!satisfy(ans.back(),v[i])){
            ans.pop_back();
            q.pop_back();
        }
        while(ans.size()>0&&!satisfy(ans.front(),v[i])){
            ans.pop_front();
            q.pop_front();
        }
        ans.push_back(crosspoint(q.back(),v[i]));
        q.push_back(v[i]);
    }
    while(ans.size()>0&&!satisfy(ans.back(),q.front())){
        ans.pop_back();
        q.pop_back();
    }
    while(ans.size()>0&&!satisfy(ans.front(),q.back())){
        ans.pop_front();
        q.pop_front();
    }
    ans.push_back(crosspoint(q.back(),q.front()));
    int m=0;
    while(ans.empty()==false){
        out[m++]=ans.front();
        ans.pop_front();
    }
    return m;
}
halfplane v[222];
point out[222];
point a[222],b[222];

int main(){
    int n1,n2;
    int cas=0;

    double x1,y1,x2,y2;
    double x3,y3,x4,y4;
    while(scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2)!=EOF){
        scanf("%lf %lf %lf %lf",&x3,&y3,&x4,&y4);
        a[0]=point(x1,y1);
        a[1]=point(x2,y1);
        a[2]=point(x1,y2);
        int n=0;


        if(x1>x2&&y1>y2){
            v[n++]=halfplane(a[0],a[1]);
            v[n++]=halfplane(a[1],a[2]);
            v[n++]=halfplane(a[2],a[0]);
        }
        else if(x1>x2&&y1<y2){
            v[n++]=halfplane(a[0],a[2]);
            v[n++]=halfplane(a[2],a[1]);
            v[n++]=halfplane(a[1],a[0]);
        }
        else if(x1<x2&&y1>y2){
            v[n++]=halfplane(a[0],a[2]);
            v[n++]=halfplane(a[2],a[1]);
            v[n++]=halfplane(a[1],a[0]);
        }
        else if(x1<x2&&y1<y2){
            v[n++]=halfplane(a[0],a[1]);
            v[n++]=halfplane(a[1],a[2]);
            v[n++]=halfplane(a[2],a[0]);
        }

        b[0]=point(x3,y3);
        b[1]=point(x4,y3);
        b[2]=point(x4,y4);
        b[3]=point(x3,y4);

        v[n++]=halfplane(b[0],b[1]);
        v[n++]=halfplane(b[1],b[2]);
        v[n++]=halfplane(b[2],b[3]);
        v[n++]=halfplane(b[3],b[0]);

        int m=halfplaneIntersection(v,n,out);
       // cout<<m<<endl;
        printf("%.8f\n",ConvexPolygonArea(out,m));
    }
    return 0;
}


/*
1 1 3 3
0 0 2 2
0 3 3 1
0 0 2 2
4462 1420 2060 2969
4159 257 8787 2970
*/
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【树状数组】CSU 1811 Tree Intersection (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接:   http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1811 题目大意:   一棵树,N(25)个节点,每个节点有一...

【模拟】【数学】CSU 1803 2016 (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接:   http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1803 题目大意:   给定n,m(n,m9)1 题目思...

湖南省第十二届大学生计算机程序设计竞赛 Parenthesis

Description Bobo has a balanced parenthesis sequence P=p1 p2…pn of length n and q questions. The...

CSU Problem 1809 Parenthesis(括号匹配,线段树,前缀和)——湖南省第十二届大学生计算机程序设计竞赛

CSU Problem 1809 Parenthesis(括号匹配,线段树,前缀和)——湖南省第十二届大学生计算机程序设计竞赛...

2016年湖南省第十二届大学生计算机程序设计竞赛:A—2016

题目链接:http://acm.csu.edu.cn/csuoj/contest/problem?cid=2122&pid=A Description  给出正整数 n 和 m,统计...

CSU-1804 有向无环图(拓扑排序+dp)(湖南省第十二届大学生程序设计竞赛)

1804: 有向无环图 Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 205  Solved: 90 [Submit][Status][Web B...

CSU 1803 2016 (数学)【2016年湖南省第十二届大学生计算机程序设计竞赛 - A】

题目点我点我点我 湖南省第十二届大学生计算机程序设计竞赛 1803: 2016 Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 289 ...

2016年湖南省第十二届大学生计算机程序设计竞赛:B—有向无环图

题目链接:http://acm.csu.edu.cn/csuoj/contest/problem?cid=2122&pid=B Description Bobo 有一个 n 个点,m 条边的有向...

2016年湖南省第十二届大学生计算机程序设计竞赛(重现) A 2016

Description给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量:1. 1≤a≤n,1≤b≤m;2. a×b 是 2016 的倍数。 Input输入包含不超过 30 组数据...

CSU 1809 Parenthesis (线段树)【2016年湖南省第十二届大学生计算机程序设计竞赛 - G】

题目点我点我点我 1809: Parenthesis Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 513  Solved: 111 [Su...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第十二届湖南省赛--三角形和矩形
举报原因:
原因补充:

(最多只允许输入30个字)