2016湖南省省赛J-三角形和矩形(CSU1812)

三角形和矩形

Time Limit: 5 Sec   Memory Limit: 128 MB   Special Judge
Submit: 257   Solved: 124
[ Submit][ Status][ Web Board]

Description

Bobo 有一个三角形和一个矩形,他想求他们交的面积。
具体地,三角形和矩形由 8 个整数 x 1,y 1,x 2,y 2,x 3,y 3,x 4,y 4 描述。 表示三角形的顶点坐标是 (x 1,y 1),(x 1,y 2),(x 2,y 1), 矩形的顶点坐标是 (x 3,y 3),(x 3,y 4),(x 4,y 4),(x 4,y 3).

Input

输入包含不超过 30000 组数据。
每组数据的第一行包含 4 个整数 x 1,y 1,x 2,y 2 (x 1≠x 2,y 1≠y 2).
第二行包含 4 个整数 x 3,y 3,x 4,y 4 (x 3<x 4,y 3<y 4).
(0≤x i,y i≤10 4)

Output

对于每组数据,输出一个实数表示交的面积。绝对误差或相对误差小于 10 -6 即认为正确。

Sample Input

1 1 3 3
0 0 2 2
0 3 3 1
0 0 2 2
4462 1420 2060 2969
4159 257 8787 2970

Sample Output

1.00000000
0.75000000
439744.13967527

HINT

Source

用三角划分的办法求多边形面积交

#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <cmath>
#include <algorithm>
 
using namespace std;
 
const int maxn=555;
const int maxisn=10;
const double eps=1e-8;
const double pi=acos(-1.0);
 
int dcmp(double x)
{
    if(x>eps) return 1;
    return x<-eps ? -1 : 0;
}
 
inline double Sqr(double x)
{
    return x*x;
}
 
struct Point
{
    double x,y;
    Point()
    {
        x=y=0;
    }
    Point(double x,double y):x(x),y(y) {};
    friend Point operator + (const Point &a,const Point &b)
    {
        return Point(a.x+b.x,a.y+b.y);
    }
    friend Point operator - (const Point &a,const Point &b)
    {
        return Point(a.x-b.x,a.y-b.y);
    }
    friend bool operator == (const Point &a,const Point &b)
    {
        return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
    }
    friend Point operator * (const Point &a,const double &b)
    {
        return Point(a.x*b,a.y*b);
    }
    friend Point operator * (const double &a,const Point &b)
    {
        return Point(a*b.x,a*b.y);
    }
    friend Point operator / (const Point &a,const double &b)
    {
        return Point(a.x/b,a.y/b);
    }
    friend bool operator < (const Point &a, const Point &b)
    {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    inline double dot(const Point &b)const
    {
        return x*b.x+y*b.y;
    }
    inline double cross(const Point &b,const Point &c)const
    {
        return (b.x-x)*(c.y-y)-(c.x-x)*(b.y-y);
    }
 
};
 
Point LineCross(const Point &a,const Point &b,const Point &c,const Point &d)
{
    double u=a.cross(b,c),v=b.cross(a,d);
    return Point((c.x*v+d.x*u)/(u+v),(c.y*v+d.y*u)/(u+v));
}
 
double PolygonArea(Point p[],int n)
{
    if(n<3) return 0.0;
    double s=p[0].y*(p[n-1].x-p[1].x);
    p[n]=p[0];
    for(int i=1; i<n; i++)
    {
        s+=p[i].y*(p[i-1].x-p[i+1].x);
    }
    return fabs(s*0.5);
}
 
double CPIA(Point a[],Point b[],int na,int nb)
{
    Point p[maxisn],temp[maxisn];
    int i,j,tn,sflag,eflag;
    a[na]=a[0],b[nb]=b[0];
    memcpy(p,b,sizeof(Point)*(nb+1));
    for(i=0; i<na&&nb>2; ++i)
    {
        sflag=dcmp(a[i].cross(a[i+1],p[0]));
        for(j=tn=0; j<nb; ++j,sflag=eflag)
        {
            if(sflag>=0) temp[tn++]=p[j];
            eflag=dcmp(a[i].cross(a[i+1],p[j+1]));
            if((sflag^eflag)==-2)
                temp[tn++]=LineCross(a[i],a[i+1],p[j],p[j+1]);
        }
        memcpy(p,temp,sizeof(Point)*tn);
        nb=tn,p[nb]=p[0];
    }
    if(nb<3) return 0.0;
    return PolygonArea(p,nb);
}
 
double SPIA(Point a[],Point b[],int na,int nb)
{
    int i,j;
    Point t1[4],t2[4];
    double res=0.0,if_clock_t1,if_clock_t2;
    a[na]=t1[0]=a[0];
    b[nb]=t2[0]=b[0];
    for(i=2; i<na; i++)
    {
        t1[1]=a[i-1],t1[2]=a[i];
        if_clock_t1=dcmp(t1[0].cross(t1[1],t1[2]));
        if(if_clock_t1<0) swap(t1[1],t1[2]);
        for(j=2; j<nb; j++)
        {
            t2[1]=b[j-1],t2[2]=b[j];
            if_clock_t2=dcmp(t2[0].cross(t2[1],t2[2]));
            if(if_clock_t2<0) swap(t2[1],t2[2]);
            res+=CPIA(t1,t2,3,3)*if_clock_t1*if_clock_t2;
        }
    }
    return res;
}
 
Point a[222],b[222];
Point aa[222],bb[222];
 
int main()
{
    double x1,y1,x2,y2;
    double x3,y3,x4,y4;
    while(~scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2))
    {
        scanf("%lf %lf %lf %lf",&x3,&y3,&x4,&y4);
        a[0]=Point(x1,y1);
        a[1]=Point(x2,y1);
        a[2]=Point(x1,y2);
        b[0]=Point(x3,y3);
        b[1]=Point(x4,y3);
        b[2]=Point(x4,y4);
        b[3]=Point(x3,y4);
        printf("%.8f\n",fabs(SPIA(a,b,3,4)));
    }
    return 0;
}

半平面交:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <cmath>
#include <algorithm>
#include<complex>

using namespace std;

#define e exp(1.0); //2.718281828
#define mod 1000000007
#define inf 0x3f3f3f3f
typedef long long LL;
#define INF 0x7fffffff
#define zero(x) (((x)>0?(x):(-x))<eps)
const double eps=1e-8;
const double pi=acos(-1.0);

//判断数k的符号 -1负数 1正数 0零
int dcmp(double k)
{
    return k<-eps?-1:k>eps?1:0;
}

inline double sqr(double x)
{
    return x*x;
}
struct point
{
    double x,y;
    point() {};
    point(double a,double b):x(a),y(b) {};
    void input()
    {
        scanf("%lf %lf",&x,&y);
    }
    friend point operator + (const point &a,const point &b)
    {
        return point(a.x+b.x,a.y+b.y);
    }
    friend point operator - (const point &a,const point &b)
    {
        return point(a.x-b.x,a.y-b.y);
    }
    friend bool operator == (const point &a,const point &b)
    {
        return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
    }
    friend bool operator < (const point &a, const point &b)
    {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    friend point operator * (const point &a,const double &b)
    {
        return point(a.x*b,a.y*b);
    }
    friend point operator * (const double &a,const point &b)
    {
        return point(a*b.x,a*b.y);
    }
    double norm()
    {
        return sqrt(sqr(x)+sqr(y));
    }
};
//计算两个向量的叉积
double cross(const point &a,const point &b)
{
    return a.x*b.y-a.y*b.x;
}
double cross3(point A,point B,point C)   //叉乘
{
    return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
}
//计算两个点的点积
double dot(const point &a,const point &b)
{
    return a.x*b.x+a.y*b.y;
}
double dot3(point A,point B,point C)   //点乘
{
    return (C.x-A.x)*(B.x-A.x)+(C.y-A.y)*(B.y-A.y);
}

//求n边形的面积,多边形上的点要按逆时针的顺序存储在p中
double ConvexPolygonArea(point *p, int n)
{
    double area = 0;
    for(int i=1; i<n-1; ++i)
        area += cross(p[i] - p[0], p[i+1] - p[0]);
    return area / 2;
}

//typedef complex<double> point;
//typedef pair<point,point> halfplane;

struct halfplane
{
    point a,b;
    halfplane() {};
    halfplane(point a,point b):a(a),b(b) {};
};

inline double satisfy(point a,halfplane p)
{
    return dcmp(cross(a-p.a,p.b-p.a))<=0;
}
point crosspoint(const halfplane &a,const halfplane &b)
{
    double k=cross(b.a-b.b,a.a-b.b);
    k=k/(k-cross(b.a-b.b,a.b-b.b));
    return a.a+(a.b-a.a)*(k);
}
double arg(point p)
{
    return arg(complex<double>(p.x,p.y));
}
bool cmp(const halfplane &a,const halfplane &b)
{
    int res=dcmp(arg(a.b-a.a)-arg(b.b-b.a));
    return res==0? satisfy(a.a,b):res<0;
}
int halfplaneIntersection(halfplane *v,int n,point *out)
{
    //sort(v.begin(),v.end(),cmp);
    sort(v,v+n,cmp);
    deque<halfplane> q;
    deque<point> ans;
    q.push_back(v[0]);
    for(int i=1; i<n; ++i)
    {
        if(dcmp(arg(v[i].b-v[i].a)-arg(v[i-1].b-v[i-1].a))==0)
        {
            continue;
        }
        while(ans.size()>0&&!satisfy(ans.back(),v[i]))
        {
            ans.pop_back();
            q.pop_back();
        }
        while(ans.size()>0&&!satisfy(ans.front(),v[i]))
        {
            ans.pop_front();
            q.pop_front();
        }
        ans.push_back(crosspoint(q.back(),v[i]));
        q.push_back(v[i]);
    }
    while(ans.size()>0&&!satisfy(ans.back(),q.front()))
    {
        ans.pop_back();
        q.pop_back();
    }
    while(ans.size()>0&&!satisfy(ans.front(),q.back()))
    {
        ans.pop_front();
        q.pop_front();
    }
    ans.push_back(crosspoint(q.back(),q.front()));
    int m=0;
    while(ans.empty()==false)
    {
        out[m++]=ans.front();
        ans.pop_front();
    }
    return m;
}
halfplane v[222];
point out[222];
point a[222],b[222];

int main()
{
    int n1,n2;
    int cas=0;
    double x1,y1,x2,y2;
    double x3,y3,x4,y4;
    while(scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2)!=EOF)
    {
        scanf("%lf %lf %lf %lf",&x3,&y3,&x4,&y4);
        a[0]=point(x1,y1);
        a[1]=point(x2,y1);
        a[2]=point(x1,y2);
        int n=0;
        if(x1>x2&&y1>y2)
        {
            v[n++]=halfplane(a[0],a[1]);
            v[n++]=halfplane(a[1],a[2]);
            v[n++]=halfplane(a[2],a[0]);
        }
        else if(x1>x2&&y1<y2)
        {
            v[n++]=halfplane(a[0],a[2]);
            v[n++]=halfplane(a[2],a[1]);
            v[n++]=halfplane(a[1],a[0]);
        }
        else if(x1<x2&&y1>y2)
        {
            v[n++]=halfplane(a[0],a[2]);
            v[n++]=halfplane(a[2],a[1]);
            v[n++]=halfplane(a[1],a[0]);
        }
        else if(x1<x2&&y1<y2)
        {
            v[n++]=halfplane(a[0],a[1]);
            v[n++]=halfplane(a[1],a[2]);
            v[n++]=halfplane(a[2],a[0]);
        }
        b[0]=point(x3,y3);
        b[1]=point(x4,y3);
        b[2]=point(x4,y4);
        b[3]=point(x3,y4);
        v[n++]=halfplane(b[0],b[1]);
        v[n++]=halfplane(b[1],b[2]);
        v[n++]=halfplane(b[2],b[3]);
        v[n++]=halfplane(b[3],b[0]);
        int m=halfplaneIntersection(v,n,out);
        // cout<<m<<endl;
        printf("%.8f\n",ConvexPolygonArea(out,m));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值