###### 第十二届湖南省赛--三角形和矩形

Bobo 有一个三角形和一个矩形，他想求他们交的面积。 具体地，三角形和矩形由 8 个整数 x1,y1,x2,y2,x3,y3,x4,y4 描述。表示三角形的顶点坐标是 (x1,y1),(x1,y2),(x2,y1)，矩形的顶点坐标是 (x3,y3),(x3,y4),(x4,y4),(x4,x3).

1 1 3 3 0 0 2 2 0 3 3 1 0 0 2 2 4462 1420 2060 2969 4159 257 8787 2970

1.00000000 0.75000000 439744.13967527

(这个题要打下自己脸，窝比赛前一天准备了板子，却没能正确的使用，orz。自罚十题）

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<queue>
#include<map>
#include<stack>
#include<set>

using namespace std;

const int maxn=555;
const int maxisn=10;
const double eps=1e-8;
const double pi=acos(-1.0);

int dcmp(double x){
if(x>eps) return 1;
return x<-eps ? -1 : 0;
}
inline double Sqr(double x){
return x*x;
}
struct Point{
double x,y;
Point(){x=y=0;}
Point(double x,double y):x(x),y(y){};
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x+b.x,a.y+b.y);
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x-b.x,a.y-b.y);
}
friend bool operator == (const Point &a,const Point &b) {
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
friend Point operator * (const Point &a,const double &b) {
return Point(a.x*b,a.y*b);
}
friend Point operator * (const double &a,const Point &b) {
return Point(a*b.x,a*b.y);
}
friend Point operator / (const Point &a,const double &b) {
return Point(a.x/b,a.y/b);
}
friend bool operator < (const Point &a, const Point &b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
inline double dot(const Point &b)const{
return x*b.x+y*b.y;
}
inline double cross(const Point &b,const Point &c)const{
return (b.x-x)*(c.y-y)-(c.x-x)*(b.y-y);
}

};

Point LineCross(const Point &a,const Point &b,const Point &c,const Point &d){
double u=a.cross(b,c),v=b.cross(a,d);
return Point((c.x*v+d.x*u)/(u+v),(c.y*v+d.y*u)/(u+v));
}
double PolygonArea(Point p[],int n){
if(n<3) return 0.0;
double s=p[0].y*(p[n-1].x-p[1].x);
p[n]=p[0];
for(int i=1;i<n;i++){
s+=p[i].y*(p[i-1].x-p[i+1].x);
}
return fabs(s*0.5);
}
double CPIA(Point a[],Point b[],int na,int nb){
Point p[maxisn],temp[maxisn];
int i,j,tn,sflag,eflag;
a[na]=a[0],b[nb]=b[0];
memcpy(p,b,sizeof(Point)*(nb+1));
for(i=0;i<na&&nb>2;++i){
sflag=dcmp(a[i].cross(a[i+1],p[0]));
for(j=tn=0;j<nb;++j,sflag=eflag){
if(sflag>=0) temp[tn++]=p[j];
eflag=dcmp(a[i].cross(a[i+1],p[j+1]));
if((sflag^eflag)==-2)
temp[tn++]=LineCross(a[i],a[i+1],p[j],p[j+1]);
}
memcpy(p,temp,sizeof(Point)*tn);
nb=tn,p[nb]=p[0];
}
if(nb<3) return 0.0;
return PolygonArea(p,nb);
}
double SPIA(Point a[],Point b[],int na,int nb){
int i,j;
Point t1[4],t2[4];
double res=0.0,if_clock_t1,if_clock_t2;
a[na]=t1[0]=a[0];
b[nb]=t2[0]=b[0];
for(i=2;i<na;i++){
t1[1]=a[i-1],t1[2]=a[i];
if_clock_t1=dcmp(t1[0].cross(t1[1],t1[2]));
if(if_clock_t1<0) swap(t1[1],t1[2]);
for(j=2;j<nb;j++){
t2[1]=b[j-1],t2[2]=b[j];
if_clock_t2=dcmp(t2[0].cross(t2[1],t2[2]));
if(if_clock_t2<0) swap(t2[1],t2[2]);
res+=CPIA(t1,t2,3,3)*if_clock_t1*if_clock_t2;
}
}
return res;//面积交
//return PolygonArea(a,na)+PolygonArea(b,nb)-res;//面积并
}

Point a[222],b[222];
Point aa[222],bb[222];

int main(){

double x1,y1,x2,y2;
double x3,y3,x4,y4;
while(scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2)!=EOF){
scanf("%lf %lf %lf %lf",&x3,&y3,&x4,&y4);
a[0]=Point(x1,y1);
a[1]=Point(x2,y1);
a[2]=Point(x1,y2);

b[0]=Point(x3,y3);
b[1]=Point(x4,y3);
b[2]=Point(x4,y4);
b[3]=Point(x3,y4);

printf("%.8f\n",fabs(SPIA(a,b,3,4)));
//printf("%.8f\n",ConvexPolygonArea(out,m));
}
return 0;
}
/*
1 1 3 3
0 0 2 2
0 3 3 1
0 0 2 2
4462 1420 2060 2969
4159 257 8787 2970
*/

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<queue>
#include<deque>
#include<map>
#include<stack>
#include<set>
#include<complex>
#define e exp(1.0); //2.718281828
#define mod 1000000007
#define inf 0x3f3f3f3f
typedef long long LL;
#define INF 0x7fffffff
using namespace std;

#define zero(x) (((x)>0?(x):(-x))<eps)
const double eps=1e-8;
const double pi=acos(-1.0);

//判断数k的符号 -1负数 1正数 0零
int dcmp(double k) {
return k<-eps?-1:k>eps?1:0;
}

inline double sqr(double x) {
return x*x;
}
struct point {
double x,y;
point() {};
point(double a,double b):x(a),y(b) {};
void input() {
scanf("%lf %lf",&x,&y);
}
friend point operator + (const point &a,const point &b) {
return point(a.x+b.x,a.y+b.y);
}
friend point operator - (const point &a,const point &b) {
return point(a.x-b.x,a.y-b.y);
}
friend bool operator == (const point &a,const point &b) {
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
friend bool operator < (const point &a, const point &b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
friend point operator * (const point &a,const double &b) {
return point(a.x*b,a.y*b);
}
friend point operator * (const double &a,const point &b) {
return point(a*b.x,a*b.y);
}
double norm() {
return sqrt(sqr(x)+sqr(y));
}
};
//计算两个向量的叉积
double cross(const point &a,const point &b) {
return a.x*b.y-a.y*b.x;
}
double cross3(point A,point B,point C) { //叉乘
return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
}
//计算两个点的点积
double dot(const point &a,const point &b) {
return a.x*b.x+a.y*b.y;
}
double dot3(point A,point B,point C) { //点乘
return (C.x-A.x)*(B.x-A.x)+(C.y-A.y)*(B.y-A.y);
}

//求n边形的面积，多边形上的点要按逆时针的顺序存储在p中
double ConvexPolygonArea(point *p, int n) {
double area = 0;
for(int i=1; i<n-1; ++i)
area += cross(p[i] - p[0], p[i+1] - p[0]);
return area / 2;
}

//typedef complex<double> point;
//typedef pair<point,point> halfplane;

struct halfplane{
point a,b;
halfplane(){};
halfplane(point a,point b):a(a),b(b){};
};

inline double satisfy(point a,halfplane p){
return dcmp(cross(a-p.a,p.b-p.a))<=0;
}
point crosspoint(const halfplane &a,const halfplane &b){
double k=cross(b.a-b.b,a.a-b.b);
k=k/(k-cross(b.a-b.b,a.b-b.b));
return a.a+(a.b-a.a)*(k);
}
double arg(point p){
return arg(complex<double>(p.x,p.y));
}
bool cmp(const halfplane &a,const halfplane &b){
int res=dcmp(arg(a.b-a.a)-arg(b.b-b.a));
return res==0? satisfy(a.a,b):res<0;
}
int halfplaneIntersection(halfplane *v,int n,point *out){
//sort(v.begin(),v.end(),cmp);
sort(v,v+n,cmp);
deque<halfplane> q;
deque<point> ans;
q.push_back(v[0]);
for(int i=1;i<n;++i){
if(dcmp(arg(v[i].b-v[i].a)-arg(v[i-1].b-v[i-1].a))==0){
continue;
}
while(ans.size()>0&&!satisfy(ans.back(),v[i])){
ans.pop_back();
q.pop_back();
}
while(ans.size()>0&&!satisfy(ans.front(),v[i])){
ans.pop_front();
q.pop_front();
}
ans.push_back(crosspoint(q.back(),v[i]));
q.push_back(v[i]);
}
while(ans.size()>0&&!satisfy(ans.back(),q.front())){
ans.pop_back();
q.pop_back();
}
while(ans.size()>0&&!satisfy(ans.front(),q.back())){
ans.pop_front();
q.pop_front();
}
ans.push_back(crosspoint(q.back(),q.front()));
int m=0;
while(ans.empty()==false){
out[m++]=ans.front();
ans.pop_front();
}
return m;
}
halfplane v[222];
point out[222];
point a[222],b[222];

int main(){
int n1,n2;
int cas=0;

double x1,y1,x2,y2;
double x3,y3,x4,y4;
while(scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2)!=EOF){
scanf("%lf %lf %lf %lf",&x3,&y3,&x4,&y4);
a[0]=point(x1,y1);
a[1]=point(x2,y1);
a[2]=point(x1,y2);
int n=0;

if(x1>x2&&y1>y2){
v[n++]=halfplane(a[0],a[1]);
v[n++]=halfplane(a[1],a[2]);
v[n++]=halfplane(a[2],a[0]);
}
else if(x1>x2&&y1<y2){
v[n++]=halfplane(a[0],a[2]);
v[n++]=halfplane(a[2],a[1]);
v[n++]=halfplane(a[1],a[0]);
}
else if(x1<x2&&y1>y2){
v[n++]=halfplane(a[0],a[2]);
v[n++]=halfplane(a[2],a[1]);
v[n++]=halfplane(a[1],a[0]);
}
else if(x1<x2&&y1<y2){
v[n++]=halfplane(a[0],a[1]);
v[n++]=halfplane(a[1],a[2]);
v[n++]=halfplane(a[2],a[0]);
}

b[0]=point(x3,y3);
b[1]=point(x4,y3);
b[2]=point(x4,y4);
b[3]=point(x3,y4);

v[n++]=halfplane(b[0],b[1]);
v[n++]=halfplane(b[1],b[2]);
v[n++]=halfplane(b[2],b[3]);
v[n++]=halfplane(b[3],b[0]);

int m=halfplaneIntersection(v,n,out);
// cout<<m<<endl;
printf("%.8f\n",ConvexPolygonArea(out,m));
}
return 0;
}

/*
1 1 3 3
0 0 2 2
0 3 3 1
0 0 2 2
4462 1420 2060 2969
4159 257 8787 2970
*/

#### CSU 1812 三角形和矩形

2016-09-03 22:18:26

#### csuoj1812: 三角形和矩形

2016-09-06 21:48:33

#### CSU 1812 三角形和矩形 【几何】

2016-09-05 00:52:26

#### CSU 1812 三角形和矩形【湖南省第十二届大学生计算机程序设计竞赛 J题】

2016-09-04 14:10:49

#### 2016年湖南省第十二届大学生计算机程序设计竞赛 J 三角形和矩形（计算几何）

2016-09-03 21:53:22

#### 判断图像中的三角形，圆形和矩形

2017-01-17 15:05:48

#### 2016湖南省省赛J-三角形和矩形（CSU1812）

2016-09-04 21:01:54

#### CSU - 1812 三角形和矩形

2017-06-01 10:36:11

#### 【动态规划】UVa 1331 最大面积最小三角形剖分

2017-07-19 17:57:26

#### 2016年湖南省第十二届大学生计算机程序设计竞赛

2016-09-04 16:27:41