Tesseract-OCR 字符识别---样本训练

转载 2013年04月06日 09:53:59

转自:http://blog.csdn.net/feihu521a/article/details/8433077


        Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文)。 Tesseract最初由HP公司开发,后来由Google维护,目前发布在Googel Project上。地址为http://code.google.com/p/tesseract-ocr/


使用默认的语言库识别


1.安装Tesseract

        从http://code.google.com/p/tesseract-ocr/downloads/list下载Tesseract,目前版本为Tesseract3.02。因为只是测试使用,这里直接下载winodws下的安装文件tesseract-ocr-setup-3.02.02.exe。安装成功后会在相应磁盘上生成一个Tesseract-OCR目录。通过目录下的tesseract.exe程序就可以对图像字符进行识别了。
2.准备一副待识别的图像,这里用画图工具随便写了一串数字,保存为number.jpg,如下图所示:
        

3.  打开命令行,定位到Tesseract-OCR目录,输入命令:

[plain] view plaincopy
  1. tesseract.exe number.jpg result -l eng  

     其中result表示输出结果文件txt名称,eng表示用以识别的语言文件为英文。

3.  打开Tesseract-OCR目录下的result.txt文件,看到识别的结果为7542315857,有3个字符识别错误,识别率还不是很高,那有没有什么方法来提供识别率呢?Tesseract提供了一套训练样本的方法,用以生成自己所需的识别语言库。下面介绍一下具体训练样本的方法。


     


训练样本


关于如何训练样本,Tesseract-OCR官网有详细的介绍http://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3。这里通过一个简单的例子来介绍一下如何进行样本训练。

1.下载工具jTessBoxEditor. http://sourceforge.net/projects/vietocr/files/jTessBoxEditor/,这个工具是用来训练样本用的,由于该工具是用JAVA开发的,需要安装JAVA虚拟机才能运行。

2. 获取样本图像。用画图工具绘制了5张0-9的文样本图像(当然样本越多越好),如下图所示:

  

  


3.合并样本图像。运行jTessBoxEditor工具,在点击菜单栏中Tools--->Merge TIFF。在弹出的对话框中选择样本图像(按Shift选择多张),合并成num.font.exp0.tif文件。

4.生成Box File文件打开命令行,执行命令:

[plain] view plaincopy
  1. tesseract.exe num.font.exp0.tif num.font.exp0 batch.nochop makebox  

  生成的BOX文件为num.font.exp0.box,BOX文件为Tessercat识别出的文字和其坐标。

注:Make Box File 文件名有一定的格式,不能随便乱取名字,命令格式为:

[plain] view plaincopy
  1. tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox  

其中lang为语言名称,fontname为字体名称,num为序号,可以随便定义。

【Yasi】:先前自己定义了tessdata的环境变量 TESSDATA_PREFIX 值为 E:\tesseract\tessdata,但没有从tesseract源文件目录中将tessdata子目录中的内容copy到 E:\tesseract\tessdata 中,造成上面的命令报错,说找不到batch.nochop 和 makebox。解决办法:将 tesseract 源文件目录中所有文件和子文件夹(可能充分但非必要,先不管这些啦)copy到 E:\tesseract\tessdata 中

5.文字校正。运行jTessBoxEditor工具,打开num.font.exp0.tif文件(必须将上一步生成的.box和.tif样本文件放在同一目录),如下图所示。可以看出有些字符识别的不正确,可以通过该工具手动对每张图片中识别错误的字符进行校正。校正完成后保存即可。

【Yasi】这里必须修改识别错误的字符,否则做出来的traineddata文件也是错的。可以在下面的界面中修改并保存,也可以直接在traineddata文件中修改。



6.定义字体特征文件。Tesseract-OCR3.01以上的版本在训练之前需要创建一个名称为font_properties的字体特征文件。

font_properties不含有BOM头,文件内容格式如下:

[plain] view plaincopy
  1. <fontname> <italic> <bold> <fixed> <serif> <fraktur>  

其中fontname为字体名称,必须与[lang].[fontname].exp[num].box中的名称保持一致。<italic> 、<bold> 、<fixed> 、<serif>、 <fraktur>的取值为1或0,表示字体是否具有这些属性。

这里在样本图片所在目录下创建一个名称为font_properties的文件,用记事本打开,输入以下下内容:

[plain] view plaincopy
  1. font 0 0 0 0 0  
这里全取值为0,表示字体不是粗体、斜体等等。

7.生成语言文件。在样本图片所在目录下创建一个批处理文件,输入如下内容。

[plain] view plaincopy
  1. rem 执行改批处理前先要目录下创建font_properties文件  
  2.   
  3. echo Run Tesseract for Training..  
  4. tesseract.exe num.font.exp0.tif num.font.exp0 nobatch box.train  
  5.   
  6. echo Compute the Character Set..  
  7. unicharset_extractor.exe num.font.exp0.box  
  8. mftraining -F font_properties -U unicharset -O num.unicharset num.font.exp0.tr  
  9.   
  10. echo Clustering..  
  11. cntraining.exe num.font.exp0.tr  
  12.   
  13. echo Rename Files..  
  14. rename normproto num.normproto  
  15. rename inttemp num.inttemp  
  16. rename pffmtable num.pffmtable  
  17. rename shapetable num.shapetable   
  18.   
  19. echo Create Tessdata..  
  20. combine_tessdata.exe num.  

将批处理通过命令行执行。执行后的结果如下:


需确认打印结果中的Offset 1、3、4、5、13这些项不是-1。这样,一个新的语言文件就生成了。

num.traineddata便是最终生成的语言文件,将生成的num.traineddata拷贝到Tesseract-OCR-->tessdata目录下。可以用它来进行字符识别了。


使用训练后的语言库识别


用训练后的语言库识别number.jpg文件, 打开命令行,定位到Tesseract-OCR目录,输入命令:

[plain] view plaincopy
  1. tesseract.exe number.jpg result -l eng  

识别结果如如图所示,可以看到识别率提高了不少。通过自定义训练样本,可以进行图形验证码、车牌号码识别等。感兴趣的朋友可以研究研究。

【Yasi】试验结果如下:

下面是num-yasi.png

将生成的num.traineddata拷贝到E:\tesseract\tessdata,即环境变量TESSDATA_PREFIX 设置的路径下,执行下面的命令(注意第二条命令结尾是num,即新加的traineddata,而不是eng

E:\tesseract\tesseract-svn\vs2008\LIB_Debug\tesseractd.exe num-yasi.png result-eng -l eng
E:\tesseract\tesseract-svn\vs2008\LIB_Debug\tesseractd.exe num-yasi.png result-num -l num

下图是两次识别结果对比


使用eng traineddata的结果完全不靠谱;使用了自己的traineddata,识别出来的当然都是数字,但正确率实在糟糕。可能是我自己手写的字体和用来做traineddata的手写数字的字体差别太大了吧。

Tesseract-OCR字符训练工具及方法

最近参加了一个人工智能的竞赛,主要完成的工作是扫描识别广告排、包装盒上的文字,包括中文、英文、和数字,后续会有些编辑、翻译的功能。 先看几张要识别的样张: 第一张是比较正...
  • shaozhenged
  • shaozhenged
  • 2016年10月08日 14:55
  • 5994

tesseract_ocr 字符识别基础及训练字库、合并字库

最近公司让我做文字串识别,通过查阅资料,谷歌的开源框架 tesseract-ocr可以帮助我们进行识别,他可以识别多种语言(一些常用的语言),多种图片格式,非常强大。 首先体验一下tesseract的...
  • why200981317
  • why200981317
  • 2015年09月08日 15:09
  • 18508

如何训练Tesseract 4.0

原文:https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00 tesseract 4.0之后开始使用...
  • huobanjishijian
  • huobanjishijian
  • 2017年07月27日 17:38
  • 4071

如何训练Tesseract 4.0

原文:https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00 tesseract 4.0之后开始使用机器学习来进...
  • panbiao1999
  • panbiao1999
  • 2017年07月07日 10:57
  • 2246

Tesseract-OCR 训练中文

为了提高Tesseract库的中文识别率,可以对它进行中文字的训练。 1.首先安装Tesseract。这里注意要安装,因为安装的程序里面包含其他训练用到的程序,编译版本没有这些工具。 2....
  • yongshi6
  • yongshi6
  • 2016年03月01日 18:35
  • 5691

Tesseract:训练

Tesseract:训练 05 May 2015 目录 资源文件资源文件的训练 数据准备图像与BOX文件生成字符集文件与字体信息文件生成特征文件生成聚集[可选]添加配置文件...
  • chudongfang2015
  • chudongfang2015
  • 2016年07月15日 18:39
  • 2069

Tesseract训练注意事项

生成训练样本 1.如果只为识别有限范围内的字体,一张训练样本就足够了,但是多余的会增加准确度。 2.生成训练样本时,确保每个字符有最少数量的样本,10个就很好,针对低频率出现的字符,5个也行。对于...
  • bmboo
  • bmboo
  • 2014年11月27日 16:07
  • 809

tesseract-ocr 第四课 如何训练新语言

2013-03-30 16:40:23|  分类: 机器学习、mining|举报|字号 订阅      ...
  • oMingZi12345678
  • oMingZi12345678
  • 2016年07月20日 14:10
  • 3501

Tesseract-OCR的训练与使用

Tesseract-OCR的训练和使用 概述:用4幅手写数字图片为训练样本,1幅为测试样本,按下面方法得Tesseract-OCR训练字库num.traineddata,最终识别结果准确率较高。...
  • liangfeihong
  • liangfeihong
  • 2015年04月24日 20:44
  • 1077

如何将Tesseract两个训练文件合并

如何将Tesseract两个训练文件合并 在tesseract的训练中,经常会有需求将不同的训练文件合在一起,因为不想重复去修改box,经过群里一位大哥的提醒,有了下面的操作,这里仅仅针对个人自己训...
  • mjcheng8879
  • mjcheng8879
  • 2016年11月03日 09:07
  • 2447
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Tesseract-OCR 字符识别---样本训练
举报原因:
原因补充:

(最多只允许输入30个字)