梯度提升(Gradient boosting)和GBDT

本文详细介绍了梯度提升(Gradient boosting)的原理,它通过不断迭代弱学习器并加权累加,构建强预测模型。在GBDT(Gradient Boosting Decision Tree)中,基学习器选用CART决策树,用于拟合样本的伪残差。通过这种方式,GBDT逐步优化损失函数,实现高效学习。
摘要由CSDN通过智能技术生成

一、梯度提升(Gradient boosting)

提升既可以用于分类,也可以用于回归。提升背后的思想是:每一步产生一个弱学习器,通过不断地把若学习器加权累加到总模型当中,来最终得到一个强预测模型。其基本公式如下:

                                                                                                             (1)

其中,m为基学习器个数,beta是系数,f 是基学习器,F就是总的模型。我们的最终目的是得到一个优秀的总模型,尽可能的使得损失函数最小,即:

              (2)

上面说了,F最终是由多个基学习器加权组成的,所以不可能同时求解。因此,梯度提升使用了一种贪心的算法,在刚开始时࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值