欧拉计划 61 题

原创 2015年07月07日 09:38:52

Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:

Triangle   P3,n=n(n+1)/2   1, 3, 6, 10, 15, ...
Square   P4,n=n2   1, 4, 9, 16, 25, ...
Pentagonal   P5,n=n(3n1)/2   1, 5, 12, 22, 35, ...
Hexagonal   P6,n=n(2n1)   1, 6, 15, 28, 45, ...
Heptagonal   P7,n=n(5n3)/2   1, 7, 18, 34, 55, ...
Octagonal   P8,n=n(3n2)   1, 8, 21, 40, 65, ...

The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.

  1. The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
  2. Each polygonal type: triangle (P3,127=8128), square (P4,91=8281), and pentagonal (P5,44=2882), is represented by a different number in the set.
  3. This is the only set of 4-digit numbers with this property.

Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented by a different number in the set.



import itertools
def triangle(u):
    for i in xrange(1,200):        
        u.append(i*(i+1)/2)
        
u=[]
triangle(u)

def square(u):
     for i in xrange(1,200):        
        u.append(i**2)
u1 =[]
square(u1)

def pentagonal(u):
     for i in xrange(1,200):        
        u.append(i*(3*i-1)/2)
u2 =[]
pentagonal(u2)

def hexagonal(u):
     for i in xrange(1,200):        
        u.append(i*(2*i-1))
        
u3 = []
hexagonal(u3)

def heptagonal(u):
     for i in xrange(1,200):        
        u.append(i*(5*i-3)/2)
u4 = []
heptagonal(u4)

def octagonal(u):
     for i in xrange(1,200):        
        u.append(i*(3*i-2))
u5 = []
octagonal(u5)


def finde4(u):
    d=[]
    for i in xrange(1,199):
        if u[i]<10000 and u[i]>999:
            d.append(u[i])
    return d
        
a1 = finde4(u)
a2 = finde4(u1)
a3 = finde4(u2)
a4 = finde4(u3)
a5 = finde4(u4)
a6 = finde4(u5)
 
pList = [a1,a2,a3,a4,a5,a6]

for p in itertools.permutations(range(5,-1,-1), 6):
        for t1 in pList[p[0]]:
            for t2 in pList[p[1]]:
                if t2/100 != t1%100:
                    continue
                for t3 in pList[p[2]]:
                    if t3/100 != t2%100:
                        continue
                    for t4 in pList[p[3]]:
                        if t4/100 != t3%100:
                            continue
                        for t5 in pList[p[4]]:
                            if t5/100 != t4%100:
                                continue
                            for t6 in pList[p[5]]:
                                if t6/100 == t5%100 and t6%100 == t1/100:
                                    print t1,t2,t3,t4,t5,t6
                                else:
                                    continue




欧拉计划 61

三角形数,四角形数,五角形数,六角形数,七角形数和八角形数都是定形数,他们分别由以下公式产生:三角形数 P3,n=n(n+1)/2 1, 3, 6, 10, 15, … 四...

欧拉计划1-50题

  • 2012年03月27日 21:09
  • 112KB
  • 下载

欧拉计划 第4题

题目 A palindromic number reads the same both ways. The largest palindrome made from the product of ...
  • Tabyou
  • Tabyou
  • 2014年03月02日 16:15
  • 608

欧拉计划网第二十三题解决方案

题目23:算出所有不能写成两个过剩数之和的正整数之和。 如果一个数的所有真因子之和等于这个数,那么这个数被称为完全数。例如,28的所有真因子之和为1 + 2 + 4 + 7 + 14 = 28,所...

欧拉计划网第十三题解决方案

题目13:找出100个50位数之和的前十位数字。 找出以下100个50位数之和的前十位数字。 3710728753390210279879799822083759024651...

欧拉计划:相似的18题和67题,以及简单的20题100!,以及19题

题目里面说Problem18 和 67是一个类型的题目,那我们就把这两个题目放在一起来看一下: 首先18题: By starting at the top of the triangle be...

欧拉计划.doc

  • 2012年07月17日 16:35
  • 73KB
  • 下载

解决问题前的思考,欧拉计划27题的反思,3次优化和求解

在遇到问题的时候,仔细思考,找到最好的方法,让计算机更快的完成任务是很重要的。 我们先来看一下这个问题: 欧拉曾发表过一个著名的二次公式: n² + n + 41 这个公式对于...

python解答欧拉计划第59题

欧拉计划第59题,关于异或加密的算法,使用python进行解答

欧拉计划 第5题

题目 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any ...
  • Tabyou
  • Tabyou
  • 2014年03月03日 12:32
  • 715
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:欧拉计划 61 题
举报原因:
原因补充:

(最多只允许输入30个字)