关闭

人群与社会——第三周

523人阅读 评论(0) 收藏 举报
分类:

3.1 小世界问题的发现

S.Milgram(1967)用传送信件的方式(让一个人给另外一个陌生人传信,中间经过的人只能给自己认识的人传送信件),证明了世界确实很小,而此之前,人们只是直觉认为世界很小。Milgram的发现了六度分割,因为社会中存在着大量的短路径,有意识的转发,能够让能够尽快的找到这些短路径。

3.2 小世界的普遍性

watt(2003)用电子邮箱的方式重复了Milgram的实验,还是证明了两个陌生人之间的距离为5~7步。Albert(2006)证明了两个没有联系的网页可以通过19次点击到达。这两个例子说明小世界现象是普遍的。

3.3 小世界的ws模型

社会网络的形成主要是两个原因:同质性(三角形),弱关系(让两个很远的人能够联系起来)。小世界在社会网络从存在,但不存在与一个完全随机的网络(虽然社会网络也是一个随机网络)。WS模型,抽象的表达了社会网络形成的基本特质。WS模型,让点均匀排列,每个点和周围的8个点连接(同质性),每个点还可以随机的和远处的点连接(弱关系)。WS模型,从可以从数学上面证明两个点直接存在短路径的概率很高。

3.4 小世界wsk模型

短视距离:每个点都知道目标点,每一步只知道自己的邻居节点的特征。

短视距离不等于最短距离,短视距离只知道局部的情况。

ws模型不能满足短视距离。

wsk模型是基于ws模型的改进。弱关系的概率与距离的幂次(p)成反比。p=0的时候,就是ws模型,当p比较小的时候,弱关系会选择较远的点,当p比较大的时候,弱关系会选择较远的点。最后通过理论分析和仿真,发现p=2的时候比较符合,能够完成短视距离的搜索。

3.5小世界参数的大世界验证

用在线网络验证wsk模型。

但是wsk模型是节点均匀分布的,但是在线网络(livejournal)是一个非均匀的网络(不能地区的人数密集程度不同)。

在均匀地理分布的情况下,一个节点在任意距离上朋友的数量在同等距离节点总数中的比随距离平方递减(wsk模型,均匀节点分布,p=2)

此时等价于要看,一个节点在任一排名上的朋友(既有连接)数量在同等排名节点总数中的占比随排名递减(1/r)。



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:27409次
    • 积分:778
    • 等级:
    • 排名:千里之外
    • 原创:54篇
    • 转载:5篇
    • 译文:0篇
    • 评论:0条