本系列文章由 @yhl_leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/50624471
依照教程:深入MNIST教程和Deep MNIST for Experts(英文官网),测试代码及结果如下:
# load MNIST data
import input_data
mnist = input_data.read_data_sets("Mnist_data/", one_hot=True)
# start tensorflow interactiveSession
import tensorflow as tf
sess = tf.InteractiveSession()
# weight initialization
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
<

本文档基于@yhl_leo的文章,详细记录了按照Tensorflow的MNIST教程进行的深度学习实验。测试结果显示,原始代码的准确率为93.22%,低于教程中的99.2%。通过将训练优化方法改为梯度下降算法,精度提升至99.25%,与教程结果相符。
最低0.47元/天 解锁文章
4839

被折叠的 条评论
为什么被折叠?



