这里借助极客学院的中文文档帮助:中文帮助文档链接,以及英文帮助文档:英文帮助文档链接(此处需要FQ,你懂得)
中文版文档存在的小问题:
对照中英文版学习,因为我发现中文文档细节有些地方翻译的不够精准;
此外,中文帮助文档MNIST入门章节中使用了已经被废弃的函数initialize_all_variables()
(虽然他在下一节深入MNIST一节中使用的是最新的函数,但是废弃的函数还是应该给予说明,特别是在新手入门这一节中),
英文文档中关于该函数介绍如下:
tf.initialize_all_variables(*args, **kwargs)(deprecated)
THIS FUNCTION IS DEPRECATED. It will be removed after 2017-03-02. Instructions for updating: Use tf.global_variables_initializer instead. ()tf.initialize_all_variables将被tf.global_variables_initializer代替
最新的tensorflow中使用的是
tf.InteractiveSession()
最新的tensorflow中使用的是
tf.InteractiveSession()
MNIST
详细介绍可看帮助文档
MNIST是一个入门级的计算机视觉数据集,包含各种手写数字图片,像这样:
它也包含每一张图片对应的标签,告诉我们这个是数字几。比如,上面这四张图片的标签分别是5,0,4,1。
在MNIST训练数据集中,mnist.train.images
是一个形状为 [60000, 784]
的张量,第一个维度数字用来索引图片,第二个维度数字用来索引每张图片中的像素点。在此张量里的每一个元素,都表示某张图片里的某个像素的强度值,值介于0和1之间。
相对应的MNIST数据集的标签是介于0到9的数字,用来描述给定图片里表示的数字。为了用于这个教程,我们使标签数据是"one-hot vectors"。 一个one-hot向量除了某一位的数字是1以外其余各维度数字都是0。所以在此教程中,数字n将表示成一个只有在第n维度(从0开始)数字为1的10维向量。比如,标签0将表示成([1,0,0,0,0,0,0,0,0,0,0])。因此,mnist.train.labels
是一个[60000, 10]
的数字矩阵。
介绍完MNIST概念,接下来要学习一个数学模型叫做:Softmax Regression。
其他概念及公式:
看中文版帮助文档即可
代码位置
之前我是借助anaconda3安装的tensorflow(我的电脑是Python2和python3共存,anaconda2和anaconda3共存),
mnist示例程序位于(附上链接:input_data.py下载,mnist_softmax.py下载):
..\anaconda2\envs\py3\Lib\site-packages\tensorflow\examples\tutorials\mnist
找到官方源码示例,如图:
源码分析:
input_data.py:
#实现的功能就是从自动下载和读取 MNIST数据
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tempfile
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
mnist_softmax.py:
1.下载数据集
先将input_data导入到项目文件夹下,然后利用下列代码导入到你的项目中
import tensorflow.examples.tutorials.mnist.input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
或者直接粘贴到你的程序中;
2.构建模型
"""
x不是一个特定的值,而是一个占位符placeholder,我们在TensorFlow运行计算时输入这个值;
用2维的浮点数张量来表示这些图,所以用float32;
None表示此张量的第一个维度可以是任何长度的,即可以输入任意数量的MNIST图像;
由于每一张图片包含28X28个像素点,我们可以用一个数字数组28*28=784来表示这张图片:
"""
x = tf.placeholder(tf.float32, [None, 784])
"""
初始化权重值W
一个Variable代表一个可修改的张量
用784维的图片向量乘以它以得到一个10维的证据值向量,每一位对应不同数字类
"""
W = tf.Variable(tf.zeros([784, 10]))
"""
bi表示数字i类的偏置量,其形状是[10],所以我们可以直接把它加到输出上面。
"""
b = tf.Variable(tf.zeros([10]))
#创建softmax回归模型
y = tf.matmul(x, W) + b
3.训练模型
引入成本函数“cross-entropy 交叉熵”
# 定义损失和优化器
y_ = tf.placeholder(tf.float32, [None, 10])
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
# reduction_indices=[1]))
#提供的 cross-entropy规则求出的数值不稳定
#所以这里我们使用 tf.nn.softmax_cross_entropy_with_logits 来产生y,然后求平均值
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_))
#设置TensorFlow用梯度下降算法(gradient descent algorithm)以0.01的学习速率最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
接下来,就是开始说的中文文档和英文文档的不同之处,这里我们采用最新源码,借助英文文档理解
#定义一个InteractiveSession类,它是命令解析器,类似tf.session必须定义,才能使用相关操作
sess = tf.InteractiveSession()
关于 tf.Session() 和tf.InteractiveSession() 的区别,点击查看
# 训练开始
tf.global_variables_initializer().run()
#这里让模型训练1000*10=1000次
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
4.模型评估
"""
tf.argmax(y, 1)返回的是模型对于任一输入x预测到的标签值,tf.argmax(y_,1) 代表正确的标签,
我们可以用 tf.equal 来检测我们的预测是否真实标签匹配(索引位置一样表示匹配)。
返回的是布尔值
"""
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
"""
这行代码会给我们一组布尔值。为了确定正确预测项的比例,我们可以把布尔值转换成浮点数,然后取平均值。
例如,[True, False, True, True] 会变成 [1,0,1,1] ,取平均值后得到 0.75.
"""
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#输出学习到的模型在测试数据集上面的正确率。
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))
5.主函数
"""
argparse是Python标准库中推荐使用的编写命令行程序的工具;
1.
add_argument()方法,用来设置程序可接受的命令行参数;type设置类型
help这里设置打印的是输入数据的路径
2.parser.parse_known_args() 从我们的命令行参数中返回了一些数据,即add_argument方法中设置的参数
3.tf.app.run(main=a,argv=b),选择参数列表b和函数a运行程序
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
6.完整代码如下:
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A very simple MNIST classifier.
See extensive documentation at
http://tensorflow.org/tutorials/mnist/beginners/index.md
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
# Import data
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
FLAGS = None
def main(_):
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# The raw formulation of cross-entropy,
#
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
# reduction_indices=[1]))
#
# can be numerically unstable.
#
# So here we use tf.nn.softmax_cross_entropy_with_logits on the raw
# outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_))
#设置TensorFlow用梯度下降算法(gradient descent algorithm)以0.01的学习速率最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
# Train
tf.global_variables_initializer().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
结果
如图所示,正确率为91.6%,结果并不好,但是这里我们只是为了学会简单模型的使用,在随后的学习,再考虑使用其他模型。