caffe学习(2): Cifar-100 tutorial

该博客介绍了如何将CIFAR-100数据集转换为Caffe所需的LMDB格式,探讨了数据预处理、数据增强技术如随机裁剪和水平翻转对模型性能的影响,以及不使用数据增强和使用后的对比实验,展示了数据增强能有效提升深度学习模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于caffe官方和很多博客已经提供了 mnistcifar10在caffe上测试的教程,这里就不再复现这些教程了,今天和大家分享一下 如何在caffe下训练cifar100数据集

一.数据准备

CIFAR-10 and CIFAR-100 datasetsCifar100和cifar10类似,训练集数目是50000,测试集是10000,只是分为20个大类和100个小类。

首先我们下载CIFAR-100 python version,下载完之后解压,在cifar-100-python下会出现:meta,test和train三个文件,他们都是python用cPickle封装的pickled对象

def unpickle(file):
    import cPickle
    fo = open(file, 'rb')
    dict = cPickle.load(fo)
    fo.close()
    return dict

通过以上代码可以将其转换成一个dict对象,test和train的dict中包含以下元素:

data——一个nx3072的numpy数组,每一行都是(32,32,3)的RGB图像,n代表图像个数

coarse_labels——一个范围在0-19的包含n个元素的列表,对应图像的大类别

fine_labels——一个范围在0-99的包含n个元素的列表,对应图像的小类别

而meta的dict中只包含fine_label_names,第i个元素对应其真正的类别。

但是caffe不支持这样的数据格式啊,下面我们用一段python脚本将其转换为大家熟悉的lmdb:

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值