deep learning
文章平均质量分 82
yujunseu
计算机视觉及深度学习
展开
-
Deep Residual Network学习(一)
对ResNet的初步解读和实验结果在cifar10上复现原创 2016-08-18 20:08:35 · 18975 阅读 · 13 评论 -
Deep Residual Network学习(二)
在cifar10上完美复现ResNet结果,得到了比论文中更好的结果原创 2016-09-08 19:24:39 · 4479 阅读 · 4 评论 -
Object Detection(1):RCNN实践
前段时间做的都是classification的工作。这周有时间,正好研究一下很感兴趣的object detection。目前得出的结果都是基于RBG大神在13年所提出的开创性工作——R-CNN。这一结构可以看作是将CNN应用到Object Detection领域的开山之作。在ImageNet/VOC/MSCOCO上所有顶尖的方法都是基于这个结构或其变种,可见其影响之大。今天我们就来学习一下这篇原创 2016-09-06 21:21:29 · 2340 阅读 · 0 评论 -
fine-tuning:利用已有模型训练其他数据集
通过对ImageNet上训练出来的模型(如CaffeNet,VGGNet,ResNet)进行微调,然后应用到我们自己的数据集上原创 2016-09-29 19:04:31 · 20432 阅读 · 14 评论 -
Object Detection(2):Fast R-CNN
RCNN后续,fast-rcnn原创 2016-10-15 19:34:00 · 1542 阅读 · 0 评论 -
Deep Visualization:可视化并理解CNN
一.前言CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释。这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了!当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作。其中一个工作就是今天我...原创 2018-01-25 22:17:53 · 3225 阅读 · 0 评论 -
FCN学习:Semantic Segmentation
感谢@huangh12 @郑途 @麦田守望者对标签图像生成的研究和讨论,这几天研究了一下,补充如下。-----------------------------------------------------分割线------------------------------------------------------谢谢@潘达的评论,这一篇确实有很多点没有分析完,当时想着后来加上去,但是由于工作...原创 2016-11-04 12:37:29 · 12052 阅读 · 10 评论 -
总结近期CNN模型的发展(一)
1.前言好久没有更新专栏了,最近因为项目的原因接触到了PyTorch,感觉打开了深度学习新世界的大门.闲暇之余就用PyTorch训练了最近在图像分类上state-of-the-art的CNN模型,正好在文章中总结如下:ResNet [1, 2]Wide ResNet [3]ResNeXt [4]DenseNet [5]DPNet [9]NASNet [10]原创 2018-01-25 22:35:37 · 5463 阅读 · 0 评论