这几天因为做实验和学习Tornado的缘故,一直没时间把上次没完成的工作做完,今天补上。今天提供The Street View House Numbers即SVHN数据集在caffe上训练的过程。
一.数据准备
SVHN是一个真实世界的街道门牌号数字识别数据集.The Street View House Numbers (SVHN) Dataset,我们可以从这里下载数据,为方便转换,我们下载train_32x32.mat和test_32x32.mat,.mat文件中包含两个变量,X是一个4D的矩阵,维度是(32,32,3,n),n是数据个数,y是label变量,接下来我们先使用一段script看一下前十张图:
import scipy.io as sio
import matplotlib.pyplot as plt
print 'Loading Matlab data.'
mat=sio.loadmat('train_32x32.mat')
data=mat['X']
label=mat['y']
for i in range(10):
plt.subplot(2,5,i+1)
plt.title(label[i][0])
plt.imshow(data[...,i])
plt.axis('off')
plt.show()