1.Miller-rabin算法:
Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法。
根据费马小定理,如果p是素数,则a^(p-1)≡1(mod p)对所有的a∈[1,n-1]成立。所以如果在[1,n-1]中随机取出一个a,发现不满足费马小定理,则证明n必为合数。
【但是每次尝试过程中还做了一个优化操作,以提高用少量的a检测出p不是素数的概率。这个优化叫做二次探测。它是根据这个定理:如果p是一个素数,那么对于x(0<x<p),若x^2%p=1,则x=1或p-1。】
为了计算a^(n-1)mod n,我们把n-1分解为x* 2^t的形式,其中t>=1且x是奇数;因此,a^(n-1)≡(a^x)^(2^t)(mod n),所以可以通过先计算a^x mod n,然后对结果连续平方t次来计算a^(n-1) mod n。一旦发现某次平方后mod n等于1了,那么说明符合了二次探测定理的逆否命题使用条件,立即检查x是否等于1或n-1,如果不等于1也不等于n-1则可直接判定p为合数。
2.pollard-rho算法:
这是一个用来快速对整数进行质因数分解的算法,需要与Miller-rabin共同使用。
算法原理:
1.通过