KD树和LSH局部敏感哈希

文档结构

文档表示

  • 词袋模型:有一些词,比如“的”,“吧”出现的频率很高,但是这些词意义不大。
  • tf-idf:在该文档局部出现的频率高,在全部文档全局出现的频率低。

距离度量

常见的距离度量有:

  • 欧氏距离: d=Kk=1(x1kx2k)2
  • 曼哈顿距离: d=Kk=1|x1kx2k|
  • 切比雪夫距离: d=maxk|x1kx2k|
  • 汉明距离:两个等长的字符串将一个变成另外一个所需的最小替换数
  • 余弦相似性: d=1x1x2|x1||x2|
  • 内积: d=x1x2
  • 核函数: d=K(x1,x2)
  • 相关系数: d=Cov(x1,x2)σx1σx2

不同的特征分布范围不同,对于变化范围很大的特征计算距离的时候要乘以相对较小的系数,对于变化范围小的特征计算距离的时候要乘以相对较大的系数。否则距离就会被变化范围较大的特征统治。另一种做法是先对源数据做归一化。

一般的欧式距离如下:

d(x,y)=||(xy)T(xy)||

考虑权重后的欧式距离如下, A 是对角阵,对角线上的元素代表该特征上的距离乘数:

d(x,y)=||(xy)TA(xy)||

对于余弦相似性,需要注意几点:

  • 不是合适的距离度量,不符合三角不等式(两边之和大于第三边)
  • 计算稀疏向量的内积很有效率

对于是否需要scale向量,需要考虑下面几点:

  • 如果不scale的话,那么对同样的两篇文章,重复其内容会导致相似性变大,这与常理不符合。
  • scale的话,会忽视文章的长度,比如一篇科技论文的相似性和一篇微博的相似性会很高,但是建议阅读科技论文的读者去阅读微博是不大符合常理的。
  • 通常的做法是,cap maximum word counts,也就是设置最大的单词数
  • 以文档为例,对于文档的内容可以scale以忽略文档长度的影响,对于文档的读者数不可以scale因为它是具有切实意义的特征。

KD树

brute-force搜索的KNN复杂度太高,单次1NN的复杂度是 O(N) ,单次KNN的复杂度是 O(NlogK) 。如果N很大,查询次数很多的话,那么效率很低。

原理

KD树通过不断划分样本到不同的子空间,构建二叉树的结构,通过剪枝实现了效率更高的查询,在低维空间表现较好。

构建

  1. 确定split特征(更宽更广的特征;alternating)
  2. 确定split的特征值(median;center point of box)
  3. split数据到两部分
  4. 对分支的数据递归构建KD树直到到达停止条件(min leaf nodes; min box width)

每个node上需要记录以下信息:

  • split的特征
  • split的特征值
  • 该node以下包含的节点区域

查询

  1. 由根节点从上到下找到对应包含查询点的叶节点
  2. 计算该区域内的点到查询点的最小距离
  3. 回溯(backtrack)其他分支,如果该分支区域与到查询点最小距离构成的圆相交,那么进一步深入该区域查询;如果不相交,那么对该分支剪枝继续回溯,直到到达根节点。

复杂度

  • 构建的复杂度: O(NlogN)
  • 单次查询的复杂度: O(logN)O(N) ,复杂度与维度是指数关系。

KD树的KNN

保留距离的时候,只需要把1NN中的离查询点最小的距离改成离查询点最小的第K个距离即可。

KD树的逼近KNN

实际计算的时候,假设已获得的离查询点最近的距离是 r ,那么剪枝的标准由d>r变成 d>r/αα>1 ,相当于更容易剪枝。

这样做,虽然可能找不到最近的NN,但是可以保证一旦我们找到的NN距离是 r ,那么没有其他点的距离小于r/α。实际中,我们定义的向量表示、距离度量都不一定是百分百地反映其本质的,所以逼近KNN通常可以取得很好的结果,关键更容易剪枝,实现了更高的查询效率。

不适用高维数据

  • 查询的复杂度随维度上升指数增长,通常要求 N>>2d
  • 距离对不相关的特征很敏感,高维空间中每个点都分离很远,最短距离构成的圆和很多点都相交。
  • 需要特征选择,判断哪个特征更优。

LSH

KD树实现检索有以下缺点:

  • 实现起来没那么有效
  • 复杂度随特征维度指数增加,不适合高维情况
  • 高维情况下,一旦发现了最近的点,那么以到最近的点距离为半径的超球体几乎与大多超多面体相交,导致剪枝效率不高。

LSH通过建立hash表,将数据分散到不同的部分,检索的时候只需要检索hash到的那部分的点即可。该方法提供了大概率上发现NN的方法。进一步提高NN概率的方向有两个:在当前hash表内,不仅检索当前的部分还检索周围的部分;建立多个hash表。

如下图所示,根据点在直线上下进行hash,将数据分为两部分,检索的时候只需要检索对应hash后的那部分的数据即可。

这里写图片描述

LSH潜在的问题

LSH潜在的问题如下:

  • 怎么找到好的直线(好的hash函数)
  • 最坏的情况怎么样
  • hash后的部分可能包含很多点,这样进一步检索的复杂度仍然很大

针对第一个问题,随机划分即可。在随机划分下,针对第二个问题,用一条直线划分,最坏情况的概率是 θπ θ 代表NN点距离样本点的夹角。

针对第三个问题,那我多用几条直线划分,每个bin中的点就小了。

如果想进一步提高精度的话,在计算能力范围内在bin的周围多检索几个bin就可以了。

LSH算法

这里写图片描述

复杂度

LSH构建hash表的复杂度为:hash表的个数*超平面的个数*数据的维度*训练数据

LSH构建hash表后检索的复杂度为:hash表的个数*表中检索bin的个数*每个bin的数据

概率逼近

这里写图片描述

多表

如果检测三个bin,有两种方法:

  1. 建立一个表,找到检索点对应的bin后,在其周围找到两个bin。
  2. 建立三个表, 每个表各找一个bin。

一般来说,当hash表中的直线(位数)越多时,第二种方法概率保证上效果更好,缺点是需要计算多个表,计算复杂度比较高。

这里写图片描述

实际中,我们一般固定bits的位数(一个hash表中划分超平面的个数,然后增大hash表的个数。

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值