State Estimation for Robotics_2.1.1_Probability Density Functions: Definitions

本文详细介绍了随机变量的概念及分类,重点阐述了连续型随机变量及其概率密度函数的定义和性质,并进一步讨论了条件密度函数及多元随机变量的联合密度函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列文章由 youngpan1101 出品,转载请注明出处。
文章链接: http://blog.csdn.net/youngpan1101/article/details/54375015
作者:宋洋鹏(youngpan1101)
邮箱: yangpeng_song@163.com


2.1.1 Definitions

-W250-2.gif 《State Estimation for Robotics》英文版链接】【黄山老师的讲解视频

  1. 定义随机变量 x ,若存在非负函数 p(x),使得对任意实数 a<b ,有

    Pr{axb}=bap(x)dx(2.1.1-1)

    则称 x 为连续型随机变量,其中 p(x) 称为 x 概率密度函数(probability density function, PDF),简称概率密度或密度函数,而 Pr{axb} 为随机变量 x 落在区域 [a,b]概率,即 Pr{axb} p(x) 在给定区域上的积分。

  2. 连续型随机变量的概率密度函数 p(x) 的性质:

    • 非负性 x(+)p(x)0
    • 规范性 +p(x)dx=1
  3. 随机变量 x 的可取值范围为 [a,b],其条件变量 y 的可取值范围为 [r,s],则对任意取值的 y x [a,b] 发生的概率为

    bap(x|y)dx=1(2.1.1-2)

    则称 p(x|y) 为给定 y x条件密度函数

  4. 对于 n 维的随机变量,记为 x=(x1,...,xn) , 这里的 x 为随机向量,则多元的随机变量的联合密度函数(joint probability densities)为 p(x1,x2,...,xn) , 对于 x,y 两个随机向量,则可以写成 p(x,y) , 对于多元的随机变量的联合密度函数,有

    bap(x)dx=bnan...b2a2b1a1p(x1,x2,...,xn)dx1dx2...dxn=1(2.1.1-3)

    式中, a=(a1,a2,...,an) b=(b1,b2,...,bn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值