Codeforces 618 D Hamiltonian Spanning Tree

博客探讨了Codeforces 618 D题目,涉及图论中的汉密尔顿路径问题。文章指出,由于图中每对节点间都有边且最小生成树与其余边权值不同,可以分析得出解决方案。文章分别讨论了当最小生成树边权值较小时采用贪心策略,以及当生成树为星形结构时的处理方法。作者提到,存在两种解题策略,并表示已实现代码,且将分享一种贪心算法的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:
http://codeforces.com/problemset/problem/618/D

题意:
一个图,任意两个节点之间都有边,现给出一个最小生成树,树上的权值和其余边的权值不一样,现让你构造出一条通过所有节点恰好一次的路径,问最小权值是多少?

思维题:
首先经过每个点恰好一次,那么走的总边数是一定的,即n-1,那么既然边的权值只有两种,那么肯定是算出一种,然后用减法求得另外一种喽!
分为两种情况,如果最小生成树上的边小的话,那么肯定就是要贪心地在树上选最小的边!
一个点可以有入度和出度,那么每个节点就是最多连两条边,所以就在最小生成树上构造这样一条路径就ok了!
另一种情况,如果最小生成树是星形的话,(也就是某个节点的度数为n-1),那么无疑肯定要选择一条最小生成树上的边,其余的话都绝对可以用非树上的边去遍历!!直觉也可以证明!!

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=2e5+10;
vector<int>edge[maxn];int degree[maxn];
int n,u,v;ll x,y;ll num;
int dfs(int u,int v){
    int</
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值