题目链接:【codeforces 618D】
给出一个由n个节点和(n-1)条边组成的生成树,这棵生成树是从包含这n个节点的完全图中出来的,生成树上边的权值是x,在完全图中但是不在生成树上的边的权值是y,求将所有的几点遍历一遍的最短路径
最短路径中每个点最多连着两条边,分两类讨论:
1、x<y ==> 使得最短路径中的边尽可能多的在生成树中
随便定义一个点作为起点,dfs跑一边,边跑边记录节点v还剩下几条边可以连(就是代码中的left),并用ans来记录生成树上的边的条数
2、x>=y ==> 使得最短路径中的边尽可能多的不在生成树中
当生成树上有节点连的边数是n-1时,必定会有1条边在生成树上,否则就是0条
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
using namespace std;
#define ll __int64
int n, x, y;
int ans;
vector<int>vec[200020];
int dfs(int u, int p)
{
int left=2;
for(int i=0; i<vec[u].size(); i++)
{
int v = vec[u][i];
if(v==p) continue;
int x = dfs(v, u);
if(left>0 && x==1)
{
ans++;
left--;
}
}
return left>0 ? 1:0;
}
int main()
{
cin>>n>>x>>y;
int u, v;
ll s1, s2;
for(int i=0; i<n-1; i++)
{
cin>>u>>v;
vec[u].push_back(v);
vec[v].push_back(u);
}
ans=0;
if(x<y)
{
dfs(1, -1);
s1 = (ll)ans*x + (ll)(n-ans-1)*y;
cout<<s1<<endl;
}
else
{
for(int i=1; i<=n; i++)
{
if((int)vec[i].size()==n-1)
{
ans=1;
break;
}
}
s2=(ll)ans*x + (ll)(n-ans-1)*y;
cout<<s2<<endl;
}
return 0;
}