codeforces 618D Hamiltonian Spanning Tree(dfs)

题目链接:【codeforces 618D】

给出一个由n个节点和(n-1)条边组成的生成树,这棵生成树是从包含这n个节点的完全图中出来的,生成树上边的权值是x,在完全图中但是不在生成树上的边的权值是y,求将所有的几点遍历一遍的最短路径

最短路径中每个点最多连着两条边,分两类讨论:

1、x<y  ==> 使得最短路径中的边尽可能多的在生成树中

随便定义一个点作为起点,dfs跑一边,边跑边记录节点v还剩下几条边可以连(就是代码中的left),并用ans来记录生成树上的边的条数

2、x>=y  ==>  使得最短路径中的边尽可能多的不在生成树中

当生成树上有节点连的边数是n-1时,必定会有1条边在生成树上,否则就是0条

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
using namespace std;
#define ll __int64
int n, x, y;
int ans;
vector<int>vec[200020];
int dfs(int u, int p)  
{  
	int left=2;
    for(int i=0; i<vec[u].size(); i++)
    {
    	int v = vec[u][i];
    	if(v==p) continue;
    	int x = dfs(v, u);
    	if(left>0 && x==1)
    	{
    		ans++;
    		left--;
    	}
    }
    return left>0 ? 1:0;
}  
int main()
{
	cin>>n>>x>>y;
	int u, v;
	ll s1, s2;
	for(int i=0; i<n-1; i++)
	{
		cin>>u>>v;
		vec[u].push_back(v);
		vec[v].push_back(u);
	}
	ans=0;
	if(x<y)
	{
		dfs(1, -1);
		s1 = (ll)ans*x + (ll)(n-ans-1)*y;
		cout<<s1<<endl;
	}
	else
	{
		for(int i=1; i<=n; i++) 
		{
			if((int)vec[i].size()==n-1) 
			{
				ans=1;
				break;
			}
		}
		s2=(ll)ans*x + (ll)(n-ans-1)*y;
		cout<<s2<<endl;
	}
	return 0; 
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值