ICML2017 Best Paper:Understanding Black-box Predictions via Influence Functions

本文探讨了如何使用统计学中的Influence Functions来解释机器学习模型,特别是深度神经网络的预测。作者提出了对单个数据点权重变化和训练数据点改变时模型参数的影响分析,提供了一种理解黑盒预测的方法。文章讨论了计算效率和理论限制,并展示了其在解释深度学习中的应用,被评为ICML2017最佳论文。
摘要由CSDN通过智能技术生成

1. 前言

众所周知,现在很多流行的机器学习模型对于我们来说就是一个黑盒子,尤其对于深度神经网络来说,网络的解释性一直是学者们很头疼的问题。一种对机器学习模型进行解释的方法是尝试找到训练数据中对结果影响最大的那部分数据点。作者应用了稳健统计学概念中的Influence Function ,来获得损失函数关于单个数据点的变化。另外,针对该方法计算量大的问题,作者提出了高效的近似算法;针对该方法对于函数可导性和凸性的严格限制,该作者对不符合要求的情况进行了讨论(这也是现在解释深度神经网络所面临的主要问题)。最后,作者讨论了该方法的应用。

这篇文章被选为ICML2017的best paper。这篇文章稍偏理论而且质量不错,仔细阅读适合初学者巩固知识,加深对机器学习模型的理解。

2.理论分析

为了研究训练数据中每个数据点对模型的影响,作者提出了两个问题:如果我们将训练数据集中的某个数据点移走会怎么样?如果我们将某个数据点的数据改变会怎么样?针对这两个问题,作者进行了讨论。

2.1 对一个数据点增加权重

首先,我们来看一下对数据点加权对模型参数的影响,形式化的来讲,模型参数的变化为: θ̂ ϵ,zθ̂  ,其中 θ̂ ϵ,z=defargminθΘ1nzizL(zi,θ)+ϵL(z,θ) , 这个公式可以理解为,去掉 zi ,然后重新进行训练,得到的参数就是 θ̂ z 。但是,对整个模型进行重新训练是一件很慢的事情。

另外,这里要说明的是,对一个数据点增加权重 ϵ ,相当于在线性近似情况下对移走数据点情况的推广:对于移走数据点的情况,加权 ϵ=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值