Parquet与ORC性能测试报告

本文在Hadoop集群环境下,对比了Parquet和ORC两种列式存储格式在TPC-DS数据集上的性能,包括数据导入、存储空间和查询效率。测试结果显示,ORC在存储空间、数据导入速度和查询性能上优于Parquet,尤其在宽表查询时,两者性能相近,但ORC存储占用更小。此外,扁平化表结构的查询性能优于嵌套结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、环境说明

Hadoop集群:使用测试Hadoop集群,节点:

hadoop230
hadoop231
hadoop232
hadoop233

这几台机器配置一样,具体参数可参考如下:
CPU数量:2个
CPU线程数:32个
内存:128GB
磁盘:48TB

使用测试机群上的同一个队列,使用整个集群的资源,所有的查询都是无并发的。

Hive使用官方的hive 1.2.1版本,使用hiveserver2的方式启动,使用本机的mysql存储元数据。

二、测试数据生成

测试数据为TPC-DS基准测试的数据,官方文档:http://www.tpc.org/information/current_specifications.asp,这个数据集一共24个表:7个事实表,17个维度表,每一个事实表和大部分的维度表组成雪花模型,scale_factor设置为100,也就是生成100GB的数据。

2.1 下载hive-testbench

git clone https://github.com/hortonworks/hive-testbench

这个项目是用于生成TPC-DS数据集并且将其导入到hive,在使用之前需要保证已经将hive、hadoop等命令加入到PATH中。

2.2 编译

进入该目录,执行./tpcds-build.sh,该命令会从TPC-D

在大数据处理中,数据存储效率和查询性能是两个至关重要的考量因素。在使用Apache Spark时,正确选择数据存储格式对于实现最优性能尤为关键。ParquetORC作为两种流行的列式存储格式,在存储效率和查询性能方面各有优势。 参考资源链接:[Apache Spark系列:ParquetORC大数据列式存储深度解析](https://wenku.csdn.net/doc/7wpxee5xkk?spm=1055.2569.3001.10343) 首先,Parquet格式的设计受到了Google Dremel论文的启发,它支持复杂的嵌套数据类型,并且能够通过列分隔的文件结构来减少读取和写入操作的开销。Parquet的元数据和统计信息数据分开存储,使得Spark能够快速评估查询并优化执行计划,这在数据仓库和大规模数据分析场景中尤为重要。 Parquet存储效率体现在它的列式压缩算法上。由于数据按列存储,相同数据类型的列可以更好地进行压缩,减少了数据存储的空间占用。此外,当执行列过滤查询时,Parquet能够只读取需要的列数据,大幅提升了查询性能,特别是在处理大规模数据集时。 另一方面,ORC格式也提供了一系列优化措施,以提高数据压缩和查询性能ORC通过使用更高效的压缩算法和优化的数据块布局,能够进一步减少存储空间,并且在读取性能上表现更好,尤其是在处理大量小型数据行时。ORC格式还内置了索引机制,支持快速的随机访问和范围查询,这在处理实时查询和复杂查询时具有明显优势。 在实际使用中,可以通过创建测试场景来评估ParquetORC性能差异。例如,可以使用Apache Spark读取相同的数据集,分别以ParquetORC格式存储,然后运行一系列查询操作,测量响应时间、资源消耗等指标。实践中你会发现,Parquet在对数据进行复杂转换和分析时表现更加出色,而ORC在实时查询和简单的数据检索任务中更为高效。 总之,ParquetORC各有千秋,而最终选择哪一种格式,应根据具体的应用场景、数据特征以及查询需求来决定。为了深入了解这两种格式的差异,建议参考《Apache Spark系列:ParquetORC大数据列式存储深度解析》一书。该资料不仅提供了关于ParquetORC格式的技术细节,还包括了实际应用案例和性能测试方法,将帮助你做出更加明智的选择。 参考资源链接:[Apache Spark系列:ParquetORC大数据列式存储深度解析](https://wenku.csdn.net/doc/7wpxee5xkk?spm=1055.2569.3001.10343)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值