贴一个遗传算法,希望对某些人有用

转载 2004年08月18日 23:02:00
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
%                                                                                                              %
% 求下列函数的最大值                                                                                  %
%        f(x)=10*sin(5x)+7*cos(4x)          x∈[0,10]                                          %
%   将 x 的值用一个10位的二值形式表示为二值问题                                           %
%                                                                                                              %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%


% 编程
%-----------------------------------------------
% 2.1初始化(编码)
%   initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)     
pop=round(rand(popsize,chromlength));         % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
                                              %    roud对矩阵的每个单元进行圆整。这样产生的初始种群。


% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop);                     %求pop行和例数
for i=1:py
      pop1(:,i)=2.^(py-1).*pop(:,i);
      py=py-1;
end
pop2=sum(pop1,2);                      %求pop1的每行之和


% 2.2.2 将二进制编码转化为十进制数(2)
%     decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);


% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10);                    %将pop每行转化成十进制数
x=temp1*10/1023;                                %将二值域 中的数转化为变量域 的数
objvalue=10*sin(5*x)+7*cos(4*x);                %计算目标函数值


% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
      if objvalue(i)+Cmin>0
          temp=Cmin+objvalue(i);
      else
          temp=0.0;
      end
      fitvalue(i)=temp;
end
fitvalue=fitvalue';


% 2.4 选择复制
%     选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
%   1) 在第 t 代,由(1)式计算 fsum 和 pi 
%   2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
%   3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
%   4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue);                %求适应值之和
fitvalue=fitvalue/totalfit;            %单个个体被选择的概率
fitvalue=cumsum(fitvalue);             %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10] 
[px,py]=size(pop);
ms=sort(rand(px,1));                   %从小到大排列
fitin=1;
newin=1;
while newin<=px
    if(ms(newin))        newpop(newin,:)=pop(fitin,:);
        newin=newin+1;
    else
        fitin=fitin+1;
    end
end


% 2.5 交叉
%     交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
%     x1=0100110
%     x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
%     y1=0100001
%     y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
    if(rand        cpoint=round(rand*py);
        newpop(i,:)=[pop(i,1:cpoint) pop(i+1,cpoint+1:py)];
        newpop(i+1,:)=[pop(i+1,1:cpoint) pop(i,cpoint+1:py)];
    else
        newpop(i,:)=pop(i,:);
        newpop(i+1,:)=pop(i+1,:);
    end
end


% 2.6 变异
%     变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
    if(rand        mpoint=round(rand*py);
        if mpoint<=0
            mpoint=1;
        end
        newpop(i,:)=pop(i,:);
        if any(newpop(i,mpoint))==0
            newpop(i,mpoint)=1;
        else
            newpop(i,mpoint)=0;
        end
    else
        newpop(i,:)=pop(i,:);
    end
end


% 2.7 求出群体中最大得适应值及其个体
%遗传算法子程序
%Name: best.m
%求出群体中适应值最大的值
function [bestindividual,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindividual=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
      if fitvalue(i)>bestfit
          bestindividual=pop(i,:);
          bestfit=fitvalue(i);
      end
end


% 2.8 主程序
%遗传算法主程序
%Name:genmain05.m
clear
clf
popsize=20;                                       %群体大小
chromlength=10;                                   %字符串长度(个体长度)
pc=0.6;                                           %交叉概率
pm=0.001;                                         %变异概率


pop=initpop(popsize,chromlength);                 %随机产生初始群体
for i=1:20                                        %20为迭代次数
[objvalue]=calobjvalue(pop);                      %计算目标函数
fitvalue=calfitvalue(objvalue);                   %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue);                 %复制
[newpop]=crossover(pop,pc);                       %交叉
[newpop]=mutation(pop,pc);                        %变异
[bestindividual,bestfit]=best(pop,fitvalue);      %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindividual;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end


fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off

遗传算法、贪婪算法、粒子群算法、蚂蚁算法概念简介

遗传算法 遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常...
  • NIeson2012
  • NIeson2012
  • 2014年03月16日 15:16
  • 3182

杭电OJ -- 2033 人见人爱A+B(c++练手的好题目)

人见人爱A+B Problem Description HDOJ上面已经有10来道A+B的题目了,相信这些题目曾经是大家的最爱,希望今天的这个A+B能给大家带来好运,也希望这个题目能唤起大家对A...
  • lishuhuakai
  • lishuhuakai
  • 2015年10月04日 09:33
  • 1538

如何快速的了解一个领域?

原文   http://www.cnblogs.com/GeoVisualization/p/3321821.htm 怎么样快速了解一个领域的大牛,高级期刊会议 ...
  • qq1987924
  • qq1987924
  • 2014年07月15日 10:31
  • 2616

一个很好理解遗传算法的例子

遗传算法的手工模拟计算示例 为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各     个主要执行步骤。         例:求下述二元函数的最大值:     (1)...
  • u013371735
  • u013371735
  • 2014年03月04日 10:09
  • 1362

分享一个简单的unityAI框架,基于神经网络和遗传算法,可以简单的实现自成长的游戏对象

基于神经网络和遗传算法的unity开发框架,可以轻易的应用到各种不同类型的游戏中 20171226 完成第一个demo,坦克扫雷 核心代码参考:https://github.com/Arzt...
  • a827443469
  • a827443469
  • 2018年01月10日 23:15
  • 36

一个matlab遗传算法源程序

对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[...
  • geqiandesuyan
  • geqiandesuyan
  • 2017年04月25日 19:56
  • 1137

遗传算法的一个小例子,纯属娱乐

初始一个群落,要求群落最终从入口移动到出口,例子来源于《游戏编程中的人工智能技术》一书,并会有所改变。 变异会改变基因样式和长度 杂交采用轮盘法选取父母 #include #include...
  • HUAJUN998
  • HUAJUN998
  • 2017年02月10日 09:28
  • 292

遗传算法一个的例子

遗传算法介绍(内含实例) 现代生物遗传学中描述的生物进化理论: 遗传物质的主要载体是染色体(chromsome),染色体主要由DNA和蛋白质组成。其中DNA为最主要的遗传物质。 基因(gene)...
  • u011001084
  • u011001084
  • 2015年10月21日 16:25
  • 309

遗传算法与直接搜索工具箱学习笔记 五-----使用GPS算法寻找一个函数的最小值

本文将使用GPS方法寻找一个函数的最小值,这个例子中使用的目标函数是ps_example,该函数已经包含在遗传算法与直接搜索工具箱中,可以使用edit ps_example来查看该函数的源代码。 [c...
  • u010480899
  • u010480899
  • 2016年12月25日 15:58
  • 255

算法理解-遗传算法(Genetic Algorithm)(一个带计算过程的例子)

想要快速的了解一个算法,最好的方式便是拿个例子手动进行实现算一遍。这里借鉴了网络上的一个例子,求解如下的一个函数: f(x)=x∗sin(10∗π∗x)+2x∈[−1,2]f(x) = x*sin(...
  • qq_27755195
  • qq_27755195
  • 2017年02月23日 01:49
  • 2816
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:贴一个遗传算法,希望对某些人有用
举报原因:
原因补充:

(最多只允许输入30个字)