关闭

经典证明:Prüfer编码与Cayley公式

标签: Prfer编码Cayley公式
620人阅读 评论(0) 收藏 举报
分类:

原文链接:http://www.matrix67.com/blog/archives/682

经典证明:Prüfer编码与Cayley公式

  
    Cayley公式是说,一个完全图K_n有n^(n-2)棵生成树,换句话说n个节点的带标号的无根树有n^(n-2)个。今天我学到了Cayley公式的一个非常简单的证明,证明依赖于Prüfer编码,它是对带标号无根树的一种编码方式。
    给定一棵带标号的无根树,找出编号最小的叶子节点,写下与它相邻的节点的编号,然后删掉这个叶子节点。反复执行这个操作直到只剩两个节点为止。由于节点数n>2的树总存在叶子节点,因此一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。下面我们只需要说明,任何一个长为n-2、取值范围在1到n之间的数列都唯一地对应了一棵n个节点的无根树,这样我们的带标号无根树就和Prüfer编码之间形成一一对应的关系,Cayley公式便不证自明了。

    注意到,如果一个节点A不是叶子节点,那么它至少有两条边;但在上述过程结束后,整个图只剩下一条边,因此节点A的至少一个相邻节点被去掉过,节点A的编号将会在这棵树对应的Prüfer编码中出现。反过来,在Prüfer编码中出现过的数字显然不可能是这棵树(初始时)的叶子。于是我们看到,没有在Prüfer编码中出现过的数字恰好就是这棵树(初始时)的叶子节点。找出没有出现过的数字中最小的那一个(比如④),它就是与Prüfer编码中第一个数所标识的节点(比如③)相邻的叶子。接下来,我们递归地考虑后面n-3位编码(别忘了编码总长是n-2):找出除④以外不在后n-3位编码中的最小的数(左图的例子中是⑦),将它连接到整个编码的第2个数所对应的节点上(例子中还是③)。再接下来,找出除④和⑦以外后n-4位编码中最小的不被包含的数,做同样的处理……依次把③⑧②⑤⑥与编码中第3、4、5、6、7位所表示的节点相连。最后,我们还有①和⑨没处理过,直接把它们俩连接起来就行了。由于没处理过的节点数总比剩下的编码长度大2,因此我们总能找到一个最小的没在剩余编码中出现的数,算法总能进行下去。这样,任何一个Prüfer编码都唯一地对应了一棵无根树,有多少个n-2位的Prüfer编码就有多少个带标号的无根树。

    一个有趣的推广是,n个节点的度依次为D1, D2, …, Dn的无根树共有(n-2)! / [ (D1-1)!(D2-1)!..(Dn-1)! ]个,因为此时Prüfer编码中的数字i恰好出现Di-1次。


以下摘自百度百科:

将树转化成Prufer数列的方法编辑

一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,...,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。
例子
Prufer数列Prufer数列
以右边的树为例子,首先在所有叶子节点中编号最小的点是2,和它相邻的点的编号是3,将3加入序列并删除编号为2的点。接下来删除的点是4,5被加入序列,然后删除5,1被加入序列,1被删除,3被加入序列,此时原图仅剩两个点(即3和6),Prufer序列构建完成,为{3,5,1,3}

将Prufer数列转化成树的方法编辑

设{a1,a2,..an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1..n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。
例子
仍为上面的树,Prufer序列为{3,5,1,3},开始时G={1,2,3,4,5,6},未出现的编号最小的点是2,将2和3连边,并删去Prufer序列首项和G中的2。接下来连的边为{4,5},{1,5},{1,3},此时集合G中仅剩3和6,在3和6之间连边,原树恢复。

0
0
查看评论

Prüfer编码和Cayley公式

Prüfer编码和Cayley公式有着密切的联系 Cayley公式:在一个n阶完全图的所有生成树的数量为n的n-2次方。 NYoj 127 星际之门(一)就是一个典型的题目应用。 一开始以为是一个递推,还推出来一个公式。可惜不对。 题目链接:点击打开链接 #include...
  • u011394362
  • u011394362
  • 2014-02-14 16:27
  • 1141

致凯利定理(Cayley公式)

NYOJ星际之门(一):http://acm.nyist.net/JudgeOnline/problem.php?pid=127 星际之门(一) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描...
  • hahaAll
  • hahaAll
  • 2015-10-06 18:30
  • 952

经典证明:Prüfer编码与Cayley公式

   Cayley公式是说,一个完全图K_n有n^(n-2)棵生成树,换句话说n个节点的带标号的无根树有n^(n-2)个。今天我学到了Cayley公式的一个非常简单的证明,证明依赖于Prüfer编码,它是对带标号无根树的一种编码方式。  &...
  • liguanxing
  • liguanxing
  • 2010-11-19 09:35
  • 777

经典证明:Prüfer编码与Cayley公式

      Cayley公式是说,一个完全图K_n有n^(n-2)棵生成树,换句话说n个节点的带标号的无根树有n^(n-2)个。今天我学到了Cayley公式的一个非常简单的证明,证明依赖于Prüfer编码,它是对带标号无根树的一种...
  • matrix67
  • matrix67
  • 2008-08-23 03:22
  • 356

Prüfer编码与Cayley公式

Prüfer编码与Cayley公式 过n个有标志顶点的树的数目等于n^(n-2) 今天遇到一个问题:在一个n阶完全图的所有生成树的数量为n的n-2次方,想了好久也没有想出来,还是在网上找到的。。。 简单点说就是: 一一对应法: 假定T是其中一棵树,树叶中有标号...
  • Justesss
  • Justesss
  • 2014-07-25 21:57
  • 589

Cayley n顶点树数定理

今天遇到一个问题:在一个n阶完全图的所有生成树的数量为n的n-2次方,想了好久也没有想出来,还是在网上找到的。。。 简单点说就是: 一一对应法: 假定T是其中一棵树,树叶中有标号最小者,设为a1,a1的邻接点为b1,从图中消去a1点 和边(a1, b1).b1点便成为消去后余下的树T1的顶点...
  • gongqian12345
  • gongqian12345
  • 2012-04-10 15:14
  • 4306

Cayley-Hamilton定理证明

Cayley-Hamilton定理n阶矩阵A的特征多项式为: ϕ(λ)=det(λI−A)=anλn+an−1λn−1+...+a1λ+a0\phi(\lambda)=det(\lambda I-A)=a_n\lambda^n+a_{n-1}\lambda^{n-1}+...+a_1\lambda...
  • u010798503
  • u010798503
  • 2016-11-24 20:59
  • 1387

【学习总结】数学-cayley定理

学习总结--数学.cayley定理 定义: 有n个标志节点的树的数目等于nn−2(仅是cayley在组合数学中的应用) 简单证明: 1.首先我们假设n为4,即有3个节点 2.这样的话我们就有k个子树,此时k=3 (图1) 3.选中其中一个节点C(1n),然后让选中不含该节点的一个子树C...
  • u011328934
  • u011328934
  • 2014-06-22 22:50
  • 2129

ZOJ 3604 Tunnel Network [Prüfer编码与Cayley公式] 【树】

!!!! 摘自题目链接 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3604—————————————————————————————————. Tunnel NetworkTime Limit: 2 Seconds ...
  • qq_33184171
  • qq_33184171
  • 2017-02-07 18:40
  • 188

1069 标号树的普吕弗(Prüfer)序列

标号树的普吕弗(Prüfer)序列是由树唯一地产生的序列。  复原算法 从一个普吕弗序列,可以求得一棵树有这一普吕弗序列。设这普吕弗序列长n − 2。第一步,找出1至n中没有在序列中出现的最小数。把标号为这数的顶点和标号为序列首项的顶点连起...
  • wyfetc
  • wyfetc
  • 2010-04-28 16:25
  • 983
    个人资料
    • 访问:287260次
    • 积分:6442
    • 等级:
    • 排名:第4470名
    • 原创:353篇
    • 转载:59篇
    • 译文:0篇
    • 评论:31条
    最新评论