Cayley公式

博客介绍了Cayley公式,即完全图生成树的数量为nn−2,通过Prüfer编码进行证明。内容涵盖Prüfer编码的概念、性质以及其与无根树的关系。此外,探讨了森林的种类个数公式f(n,k)=k∗nn−k−1的不严谨证明,并提供了一个相关的竞赛编程题目作为实例。" 75274024,5997446,八数码问题的BFS解决方案,"['搜索算法', '图论', '八数码问题', 'BFS', '路径规划']
摘要由CSDN通过智能技术生成

Cayley公式

内容

一个含有n个节点的完全图的生成树的个数为 n n − 2 n^{n-2} nn2,即带有标号的n个节点的无根树的个数为 n n − 2 n^{n-2} nn2

证明思路

Cayley公式可以根据Prüfer编码来证明。

Prüfer编码

给定带有标号的无根树,找出标号最小的叶子节点,将该点删掉同时写下与该点相邻节点标号,重复上述步骤直到剩下2个节点。最终写下来的标号序列为Prüfer编码。

小结论

1.可以证明一个Prüfer编码对应一种有标号的无根树,且序列的长度为无根树的节点个数-2,假设无根树有n个节点,那么序列的长度为 n − 2 n-2 n2
2.n个无根树的个数=Prüfer编码的个数= n n − 2 n^{n-2} nn2

拓展

由n个节点组成的k颗树的森林的种类个数:
f ( n , k ) = k ∗ n n − k − 1 f(n,k)=k*n^{n-k-1} f(n,k)knnk1

不严谨证明

证明:
f ( n , k ) f(n,k) f(n,k)表示n个节点组成的k颗树的森林的种类个数
我们可以得到 f ( n , k ) = ∑ j = 0 n − k ( n − k j ) f ( n − 1 , k + j − 1 ) f(n,k)=\sum_{j=0}^{n-k}{n-k \choose j}f(n-1,k+j-1) f(n,k)=j=0nk(jnk)f(n1,k+j1)
我对上式的理解:
我们有k个节点(初始森林大小为1)标号为 1 , 2 , 3 , … , k 1,2,3,\dots,k 1,2,3,,k

( n − k j ) {n-k \choose j} (jnk):从剩下的 n − k n-k nk点中选出 j j j个与 1 1 1节点相连的方法数

f ( n − 1 , k + j − 1 ) f(n-1,k+j-1) f(n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值