第12周上机实践项目3 - 图遍历算法实现(DFS)

原创 2015年11月20日 08:14:39

问题及代码:

/*   
*Copyright(c)2015,烟台大学计算机与控制工程学院           
*All rights reserved.           
*文件名称:test.cpp           
*作者:颜肖璇           
*完成日期:2015年11月20日        
*版本号:v1.0              
/*           
*问题描述:  
      实现图遍历算法,分别输出如下图结构的深度优先(DFS)遍历序列和广度优先遍历(BFS)序列。
*输入描述:     
*程序输出:         
*/    

这里写图片描述

测试函数:main.cpp,完成相关的测试工作;

    
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];
void DFS(ALGraph *G, int v)
{
    ArcNode *p;
    int w;
    visited[v]=1;
    printf("%d ", v);
    p=G->adjlist[v].firstarc;
    while (p!=NULL)
    {
        w=p->adjvex;
        if (visited[w]==0)
            DFS(G,w);
        p=p->nextarc;
    }
}

int main()
{
    int i;
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,0,1,0},
        {1,0,1,0,0},
        {0,1,0,1,1},
        {1,0,1,0,1},
        {0,0,1,1,0}
    };
    ArrayToList(A[0], 5, G);

    for(i=0; i<MAXV; i++) visited[i]=0;
    printf(" 由2开始深度遍历:");
    DFS(G, 2);
    printf("\n");

    for(i=0; i<MAXV; i++) visited[i]=0;
    printf(" 由0开始深度遍历:");
    DFS(G, 0);
    printf("\n");
    return 0;
}

头文件:graph.h,包含定义图数据结构的代码、宏定义、要实现算法的函数的声明;

#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED

#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G

#endif // GRAPH_H_INCLUDED


源文件:graph.cpp,包含实现各种算法的函数的定义;

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一条边
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
    int i,j;
    ArcNode *p;
    g.n=G->n;   //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
    g.e=G->e;
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}


测试时用的图是这里写图片描述

运行结果:

知识点总结:

         实现图遍历算法,分别输出图结构的深度优先(DFS)遍历序列和广度优先遍历(BFS)序列。

学习心得:

         通过画图的方法,理解更加透彻。
版权声明:本文为博主原创文章,未经博主允许不得转载。

图的遍历之DFS算法

图的遍历即从其中的一个顶点出发,沿着一些边访问图中所有的顶点,且每个顶点只访问一次。图的遍历可以通过两种方法来实现:即深度优先搜索(Deth First Search)和广度优先搜索(Breadth ...
  • Pursue_success
  • Pursue_success
  • 2016年02月17日 20:50
  • 340

算法导论--图的遍历(DFS与BFS)

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51897538图的遍历就是从图中的某个顶点出发,按某种方法对图中的...
  • luoshixian099
  • luoshixian099
  • 2016年07月13日 17:41
  • 2441

第12周上机实践项目3 - 图遍历算法实现(BFS)

问题及代码: /* *Copyright(c)2015,烟台大学计算机与控制工程学院 *All rights reserved. *文件名...
  • yxx455237674
  • yxx455237674
  • 2015年11月20日 08:22
  • 226

数据结构(17)--图的遍历DFS和BFS

参考书籍:数据结构(C语言版)严蔚敏吴伟民编著清华大学出版社     从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次。这一过程就叫做图的遍历。 示例: 1.深度优...
  • u010366748
  • u010366748
  • 2016年03月04日 00:20
  • 2752

算法导论—无向图的遍历(BFS+DFS,MATLAB)

华电北风吹 天津大学认知计算与应用重点实验室 最后修改日期:2015/8/22无向图的存储方式有邻接矩阵,邻接链表,稀疏矩阵等。无向图主要包含两方面内容,图的遍历和寻找联通分量。一、无向图的遍历 ...
  • zhangzhengyi03539
  • zhangzhengyi03539
  • 2015年08月22日 13:44
  • 5732

图的DFS遍历(python版本)

很久不写c++了,写了很久的sql,明显感觉代码能力退化了,利用python写了个DFS,思路很简单了,这里只是做个简单的记录,主要是区别在于,限制了一个step,当一个很大的图,全局遍历会很大,所以...
  • wangxin110000
  • wangxin110000
  • 2016年05月17日 20:02
  • 2944

c++中图的遍历,dfs和bfs的简单实现

c++中关于图的遍历的算法,bfs和dfs的基本实现
  • play_841266670
  • play_841266670
  • 2017年06月06日 11:35
  • 733

【数据结构】图的遍历之DFS和BFS

1.图的遍历包括深度优先遍历DFS和广度优先遍历BFS,这两种遍历算法在
  • u010119170
  • u010119170
  • 2014年05月11日 17:13
  • 1472

图的邻接矩阵和DFS遍历

图的存储结构相对于线性表和树来说,是复杂了许多,而不是用一个线性表或者链表就能定义的。对于图来说,它的存储方式有邻接矩阵,邻接表,十字链表,邻接多重表和边集数组。在这里,要介绍的是如果使用邻接矩阵和邻...
  • jeffleo
  • jeffleo
  • 2016年11月23日 18:58
  • 1051

【数据结构】Java实现图的DFS和BFS

图的深度优先遍历(DFS)和广度优先遍历(BFS),DFS利用递归来实现比较易懂,DFS非递归就是将需要的递归的元素利用一个栈Stack来实现,以达到递归时候的顺序,而BFS则是利用一个队列Queue...
  • qq_24486393
  • qq_24486393
  • 2015年12月12日 00:43
  • 4337
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第12周上机实践项目3 - 图遍历算法实现(DFS)
举报原因:
原因补充:

(最多只允许输入30个字)