数据压缩与信息熵

原创 2015年11月20日 15:02:02

前言


1992年,美国佐治亚州的WEB Technology公司,宣布做出了重大的技术突破。

该公司的DataFiles/16软件,号称可以将任意大于64KB的文件,压缩为原始大小的16分之一。业界议论纷纷,如果消息属实,无异于压缩技术的革命。

事实上,有一些文件是无法压缩的,哪怕一个二进制位,都压缩不掉。

那么,为何不是所有的文件都可以被压缩?是否存在一个压缩极限呢,也就是说,到了一定大小,就没法再压缩了?


正文


一、压缩的有限性

首先,回答第一个问题:为什么WEB Technology公司的发明不可能是真的。

反证法。假定任何文件都可以压缩到n个二进制位(bit)以内,那么最多有2n种不同的压缩结果。也就是说,如果有2n+1个文件,必然至少有两个文件会产生同样的压缩结果。这意味着,这两个文件不可能无损地还原(解压缩)。因此,并非所有文件都可以压缩到n个二进制位以下。

很自然地,下一个问题就是,这个n到底是多少?

二、压缩原理

要回答一个文件最小可以压缩到多少,要知道压缩的原理。

压缩原理,就是找出那些重复出现的字符串,然后用更短的符号代替,达到缩短字符串的目的。比如,一篇文章大量使用"中华人民共和国"这个词语,我们用"中国"代替,就缩短了5个字符,如果用"华"代替,就缩短了6个字符。事实上,只要保证对应关系,可以用任意字符代替那些重复出现的字符串。

本质上,所谓"压缩"就是找出文件内容的概率分布,将那些出现概率高的部分代替成更短的形式。所以,内容越是重复的文件,就可以压缩地越小。比如,"ABABABABABABAB"可以压缩成"7AB"。

相应地,如果内容毫无重复,就很难压缩。极端情况就是,遇到那些均匀分布的随机字符串,往往连一个字符都压缩不了。比如,任意排列的10个阿拉伯数字(5271839406),就是无法压缩的;再比如,无理数(比如π)也很难压缩。

压缩就是一个消除冗余的过程,相当于用一种更精简的形式,表达相同的内容。可以想象,压缩过一次以后,文件中的重复字符串将大幅减少。好的压缩算法,可以将冗余降到最低,以至于再也没有办法进一步压缩。所以,压缩已经压缩过的文件(递归压缩),通常是没有意义的。

三、压缩的极限

压缩分成两个步骤:

第一步:得到文件内容的概率分布,哪些部分出现的次数多,哪些部分出现的次数少;

第二步:是对文件进行编码,用较短的符号替代那些重复出现的部分。

第一步的概率分布一般是确定的,现在就来考虑第二步,怎样找到最短的符号作为替代符。

如果文件内容只有两种情况(比如扔硬币的结果),那么只要一个二进制位就够了,1表示正面,0表示表示负面。如果文件内容包含三种情况(比如球赛的结果),那么最少需要两个二进制位。如果文件内容包含六种情况(比如扔筛子的结果),那么最少需要三个二进制位。

一般来说,在均匀分布的情况下,假定一个字符(或字符串)在文件中出现的概率是p,那么在这个位置上最多可能出现1/p种情况。需要log2(1/p)个二进制位表示替代符号。

这个结论可以推广到一般情况。假定文件有n个部分组成,每个部分的内容在文件中的出现概率分别为p1、p2、...pn。那么,替代符号占据的二进制最少为下面这个式子。

log2(1/p1) + log2(1/p2) + ... + log2(1/pn)

= ∑ log2(1/pn)

这可以被看作一个文件的压缩极限。

四、信息熵的公式

上一节的公式给出了文件压缩的极限。对于n相等的两个文件,概率p决定了这个式子的大小。p越大,表明文件内容越有规律,压缩后的体积就越小;p越小,表明文件内容越随机,压缩后的体积就越大。

为了便于文件之间的比较,将上式除以n,可以得到平均每个符号所占用的二进制位。

∑ log2(1/pn) / n

= log2(1/p1)/n + log2(1/p2)/n + ... + log2(1/pn)/n

由于p是根据频率统计得到的,因此上面的公式等价于下面的形式。

p1*log2(1/p1) + p2*log2(1/p2) + ... + pn*log2(1/pn)

= ∑ pn*log2(1/pn)

= E( log2(1/p) )

上面式子中最后的E,表示数学期望。可以理解成,每个符号所占用的二进制位,等于概率倒数的对数的数学期望。

例子:

假定有两个文件都包含1024个符号,在ASCII码的情况下,它们的长度是相等的,都是1KB。甲文件的内容50%是a,30%b,20%是c,则平均每个符号要占用1.49个二进制位。

0.5*log2(1/0.5) + 0.3*log2(1/0.3) + 0.2*log2(1/0.2)

= 1.49

既然每个符号要占用1.49个二进制位,那么压缩1024个符号,理论上最少需要1526个二进制位,约0.186KB,相当于压缩掉了81%的体积。

乙文件的内容10%是a,10%是b,......,10%是j,则平均每个符号要占用3.32个二进制位。

0.1*log2(1/0.1)*10

= 3.32

既然每个符号要占用3.32个二进制位,那么压缩1024个符号,理论上最少需要3400个二进制位,约0.415KB,相当于压缩掉了58%的体积。

对比上面两个算式,可以看到文件内容越是分散(随机),所需要的二进制位就越长。所以,这个值可以用来衡量文件内容的随机性(又称不确定性)。这就叫做信息熵(information entropy)。

p s:它是1948年由美国数学家克劳德·香农(Claude Shannon)在经典论文《通信的数学理论》中,首先提出的。




总结



信息熵的含义

想要理解信息熵这个概念,有几点需要注意。

(1)信息熵只反映内容的随机性,与内容本身无关。不管是什么样内容的文件,只要服从同样的概率分布,就会计算得到同样的信息熵。

(2)信息熵越大,表示占用的二进制位越长,因此就可以表达更多的符号。所以,人们有时也说,信息熵越大,表示信息量越大。不过,由于第一点的原因,这种说法很容易产生误导。较大的信息熵,只表示可能出现的符号较多,并不意味着你可以从中得到更多的信息。

(3)信息熵与热力学的熵,基本无关。这两个熵不是同一件事,信息熵表示无序的信息,热力学的熵表示无序的能量。

版权声明:本文为博主原创文章,未经博主允许不得转载。https://creativecommons.org/licenses/by-nc-sa/2.5/cn/

相关文章推荐

数据压缩与信息熵

1992年,美国佐治亚州的WEB Technology公司,宣布做出了重大的技术突破。 该公司的DataFiles/16软件,号称可以将任意大于64KB的文件,压缩为原始大小的16分之一。业界议...
  • ycc541
  • ycc541
  • 2015年08月02日 16:35
  • 244

【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集

1.背景           决策书算法是一种逼近离散数值的分类算法,思路比较简单,而且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International ...

数据挖掘十大经典算法学习之C4.5决策树分类算法及信息熵相关

Definition 决策树学习时应用最广的归纳推理算法之一。[1]它是一种逼近离散值函数的方法,对噪声数据有很好的健壮性且能够学习析取表达式。CLS, ID3,C4.5,CART均是决策树学习算法...
  • vshadow
  • vshadow
  • 2012年11月29日 21:48
  • 11073

【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集

(转载请注明出处:http://blog.csdn.net/buptgshengod)
  • gshengod
  • gshengod
  • 2014年04月24日 07:28
  • 16109

信息熵求权重

  • 2014年08月27日 00:41
  • 369B
  • 下载

【数据压缩】压缩率-图像熵-保真度

关于图像压缩上的几个名词解释: 1.平均比特数:对应一张图像上每个像素所采用的平均比特数,L(r_k)为灰度级r_k所使用的比特数,p(r_k)表示对应灰度级的概率; 2.压缩率&相对数据冗余:若...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据压缩与信息熵
举报原因:
原因补充:

(最多只允许输入30个字)