LeetCode60——Permutation Sequence

LeetCode60——Permutation Sequence

又是全排列的问题。

循环调用next_permutation()这个方法测试过超时。

这个题参考了:http://blog.csdn.net/linhuanmars/article/details/22028697

简单的说一下。

对于1,2,3这样的序列来说,假设要求它的第5个全排列是3,1,2


我们采取这种办法:由于序列的长度是3,那么我们从索引为0的位置开始,添加数字。

对于索引0来说,它可以从1,2,3中选,由于他们按照字典序排列。

所以结论:1,2,3的第5个全排列,他的的第一个数(索引为0)是3。

这个结论是这么算出来的:

当固定第一个数时,剩下的数一共有(n-1)!种组合。

结合例子:

那么,当第一个数为1时有2种情况。

当第一个数为2时有两种情况。

那么当k=5时自然而然就将第一个数填为3了。


好,现在我们要填写第二个数字。那么首先,我们要从原来的序列(1,2,3)中剔除3。

然后我们要看k=5时在(n-1)!内部排第几,我们用5%2=1,在固定第一个数后,剩下的序列中,我们的序列排在第1位,回到上面的步骤,我们就能填出第2个数字为1了。

代码:

class Solution {
public:
	string getPermutation(int n, int k) {
		vector<char>nums;
		string result;
		int count = 1;
		k = k - 1;
		for (int i = 1; i <= n; i++)
			nums.push_back(i + '0');
		for (int i = 2; i < n; i++)
			count *= i;//每一组数量 (n-1)!
		while (n--)
		{
			int index = k / count;//第一个数
			k = k%count;//更新k的值,剔除第一个数后的全排列的位置
			result += nums[index];
			nums.erase(nums.begin() + index);
			if (n == 0)
				break;
			count /= n;//计算完一次也需要将(n-1)!更新到(n-2)!
		}
		return result;
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值