【图论】割点,桥,边双联通

原创 2015年07月08日 13:40:23
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<string>
using namespace std;
const int maxn=20010;
struct Edge{
    int from,to;
//    不带边权可删除var
    int var;
    bool is_bridge;
};
vector<int>G[maxn];
vector<Edge>edges;
vector<int>Set;
int dfs_clock;//初始化为0
int pre[maxn];//初始化为-1
int low[maxn];
bool cut_point[maxn];
int color[maxn];
bool vis[maxn];
int res;

void add(int a,int b,int c){
    Edge e;
    e.from=a;e.to=b;e.var=c;e.is_bridge=false;
    edges.push_back(e);
    G[a].push_back(edges.size()-1);
    e.from=b;e.to=a;
    edges.push_back(e);
    G[b].push_back(edges.size()-1);
}


// u为当前点
// fa为父亲节点
// EdgeNo为到当前点的边的序号
int dfs(int u,int fa,int EdgeNO){
    int lowu=pre[u]=++dfs_clock;
    int child=0;
    for(int i=0;i<G[u].size();i++){
        int v=edges[G[u][i]].to;
        if(pre[v]==-1){
            child++;
            int lowv=dfs(v,u,G[u][i]);
            lowu=min(lowv,lowu);
            if(lowv>=pre[u]){
                cut_point[u]=true;
                if(lowv>pre[u]){
                    res++;
                    edges[G[u][i]].is_bridge=true;
                    edges[G[u][i]^1].is_bridge=true;
                }
            }
        }
        else if(pre[v]<pre[u]&&G[u][i]!=(EdgeNO^1))
            lowu=min(pre[v],lowu);
    }
    if(fa<0&&child==1)cut_point[u]=0;
    low[u]=lowu;
    return lowu;
}

int Find_Color(int u,int fa){
    int minC=u;
    Set.push_back(u);
    for(int i=0;i<G[u].size();i++){
        int v=edges[ G[u][i] ].to;
        if(edges[G[u][i]].is_bridge)continue;
        if(vis[v])continue;
        vis[v]=true;
        int col=Find_Color(v,u);
        minC=min(minC,col);
    }
    return minC;
}
void Paint(int n){
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++){
        if(vis[i])continue;
        vis[i]=true;
        int col=Find_Color(i,-1);
        for(int i=0;i<Set.size();i++)
            color[Set[i]]=col;
        Set.clear();
    }
}

void init(){
    res=1;
    dfs_clock=0;
    for(int i=0;i<maxn;i++)
        G[i].clear();
    edges.clear();
    memset(pre,-1,sizeof(pre));
    memset(cut_point,0,sizeof(cut_point));
    memset(color,-1,sizeof(color));
}

/**************************************
用add 完成建图之后
初始化
调用dfs()函数找出割点和桥
调用Paint(n)进行边双联通着色
结点序号从1开始
输出:
cut_point[i]       判断i是否为割点
edges[j].is_bridge 判断j边是否是桥(反向边也有标记)
color[i]           判断i属于哪个集合
***************************************/

int main(){
//    freopen("C:\\Users\\金柯\\Desktop\\input.txt","r",stdin);
    int n,m;
    while(cin>>n>>m){
        init();
        for(int i=1;i<=m;i++){
            int a,b;
            cin>>a>>b;
            add(a,b,0);
        }
        dfs(1,-1,-1);
        Paint(n);
        cout<<res<<endl;
        for(int i=1;i<=n;i++){
            cout<<color[i]<<" ";
        }
        cout<<endl;
    }
    return 0;
}

版权声明:本文为博主原创文章,反正吹牛逼不上税~

【图论】割点、桥、双连通

连通分量个数可以通过一次BFS或者DFS得到 割点和桥 可以meij
  • abgnwl
  • abgnwl
  • 2014年11月23日 00:21
  • 523

【学习笔记】图论 割点 割边

图论 割点 割边(讲解+模板)
  • lhq_er
  • lhq_er
  • 2017年07月16日 16:24
  • 189

图论之割点和桥

割点:如果在图G中删去一个结点u后,图G的连通分枝数增加,即W(G-u)>W(G),则称结点u为G的割点,又称关节点。 桥:如果在图G中删去一条边e后,图G的连通分支数增加,即W(G-e)>W(G)...

图论Tarjan求割点与桥

使用Tarjan方法计算割点与桥,这里先介绍下概念。 无向连通图中,如果删除某点后,图变成不连通,则称该点为割点。 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥。 一个顶点u是割点,...

模板整理: 图论---tarjan缩点/桥/割点

tarjan这算法没学好……气哦 目前掌握得还可以的只有缩点, 每次桥和割点只能手推。。还总是推错。 说实话也没什么难的啊。。 缩点,桥,割点之前的学习笔记 先是缩点,也就是强连通分量双...

图论小结(一)包括一些最短路,最小生成树,差分约束,欧拉回路,的经典题和变种题。强连通,双连通,割点割桥的应用。二分匹配,KM,支配集,独立集,还有2-SAT。

图论小结(一) 下面是对暑假集训的图论部分的一些总结和体会。 包括一些最短路,最小生成树,差分约束,欧拉回路,的经典题和变种题。强连通,双连通,割点割桥的应用。二分匹配,KM,支配集,独立集,还有2-...
  • ehi11
  • ehi11
  • 2012年08月27日 09:57
  • 6486

【学习笔记】图论 Tarjan LCA 割点 桥 暑假7.5

简介 Tarjan作为一位算法大师,发明了许多算法。本篇博文介绍一下Tarjan框架下的求解树上LCA(最近公共祖先)的离线算法,复杂度O(N+Q)。以及求割点,桥的算法,复杂度O(V+E),即dfs...
  • lhq_er
  • lhq_er
  • 2017年07月11日 14:20
  • 89

割点,割边,强联通分量,点双联通分量,边双联通分量

连通图的割点、割边(桥)、块、缩点,有向图的强连通分量   【本文摘选自百度文库】 一、基本概念 无向图 割点:删掉它之后(删掉所有跟它相连的边),图必然会分裂成两个或两个以上的子图。 ...
  • hjf1201
  • hjf1201
  • 2017年11月07日 10:26
  • 95

割点,割桥,双联通模板总结

割点求法 void tarjan(int x,int fa) {     int temp,a,sum=0;     low[x]=cnt[x]=++dfssum;     for(a=0;a    ...

基于DFS求无向图的割点及桥(割边)算法总结 POJ_1144题解

1.割点,桥(割边)定义: 若v2(v1的后继节点)有且仅有反向边最远连接到v1,那么删除v1后不连通,v1是割点。作为一种特殊情况,如果v2及其后代通过反向边只能连回v2自己,那么只要删除edge...
  • zl_130
  • zl_130
  • 2015年08月13日 16:43
  • 179
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【图论】割点,桥,边双联通
举报原因:
原因补充:

(最多只允许输入30个字)