# 【图论】割点，桥，边双联通

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<string>
using namespace std;
const int maxn=20010;
struct Edge{
int from,to;
//    不带边权可删除var
int var;
bool is_bridge;
};
vector<int>G[maxn];
vector<Edge>edges;
vector<int>Set;
int dfs_clock;//初始化为0
int pre[maxn];//初始化为-1
int low[maxn];
bool cut_point[maxn];
int color[maxn];
bool vis[maxn];
int res;

Edge e;
e.from=a;e.to=b;e.var=c;e.is_bridge=false;
edges.push_back(e);
G[a].push_back(edges.size()-1);
e.from=b;e.to=a;
edges.push_back(e);
G[b].push_back(edges.size()-1);
}

// u为当前点
// fa为父亲节点
// EdgeNo为到当前点的边的序号
int dfs(int u,int fa,int EdgeNO){
int lowu=pre[u]=++dfs_clock;
int child=0;
for(int i=0;i<G[u].size();i++){
int v=edges[G[u][i]].to;
if(pre[v]==-1){
child++;
int lowv=dfs(v,u,G[u][i]);
lowu=min(lowv,lowu);
if(lowv>=pre[u]){
cut_point[u]=true;
if(lowv>pre[u]){
res++;
edges[G[u][i]].is_bridge=true;
edges[G[u][i]^1].is_bridge=true;
}
}
}
else if(pre[v]<pre[u]&&G[u][i]!=(EdgeNO^1))
lowu=min(pre[v],lowu);
}
if(fa<0&&child==1)cut_point[u]=0;
low[u]=lowu;
return lowu;
}

int Find_Color(int u,int fa){
int minC=u;
Set.push_back(u);
for(int i=0;i<G[u].size();i++){
int v=edges[ G[u][i] ].to;
if(edges[G[u][i]].is_bridge)continue;
if(vis[v])continue;
vis[v]=true;
int col=Find_Color(v,u);
minC=min(minC,col);
}
return minC;
}
void Paint(int n){
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++){
if(vis[i])continue;
vis[i]=true;
int col=Find_Color(i,-1);
for(int i=0;i<Set.size();i++)
color[Set[i]]=col;
Set.clear();
}
}

void init(){
res=1;
dfs_clock=0;
for(int i=0;i<maxn;i++)
G[i].clear();
edges.clear();
memset(pre,-1,sizeof(pre));
memset(cut_point,0,sizeof(cut_point));
memset(color,-1,sizeof(color));
}

/**************************************

cut_point[i]       判断i是否为割点
edges[j].is_bridge 判断j边是否是桥（反向边也有标记）
color[i]           判断i属于哪个集合
***************************************/

int main(){
//    freopen("C:\\Users\\金柯\\Desktop\\input.txt","r",stdin);
int n,m;
while(cin>>n>>m){
init();
for(int i=1;i<=m;i++){
int a,b;
cin>>a>>b;
}
dfs(1,-1,-1);
Paint(n);
cout<<res<<endl;
for(int i=1;i<=n;i++){
cout<<color[i]<<" ";
}
cout<<endl;
}
return 0;
}


#### 【学习笔记】图论 割点 割边

2017-07-16 16:24:11

#### 图论,割点求法

2011-04-30 10:16:00

#### 图论之割点和桥

2015-12-08 10:04:34

#### 图论判别图G是否为割点割边

2017年12月20日 1.02MB 下载

#### 【图论】割点、桥、双连通

2014-11-23 00:21:00

#### 图论---求割点，求桥（tarjan） （模板）

2017-07-04 15:32:32

#### 图论——割点

2015-02-17 23:49:06

#### 图论——寻找无向连通图割点算法

2016-12-20 20:51:03

#### 图论算法（五）--求解割点、割边（JAVA）

2018-01-12 22:45:06

#### poj 1523 SPF 图论基础 图的割点

2015-09-10 20:33:39