逻辑回归(logistics regression)及其应用(MLIA第五章)

一、基本原理

逻辑回归与线性回归

Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程:

(1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程时非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。

(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差的估计,称为风险函数或期望损失函数。

(3)显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有的是梯度下降法(Gradient Descent)。

分类问题与Sigmoid函数

σ(z)=11+ez

Sigmoid函数看起来很像一个阶跃函数。
海维赛德阶跃函数——heaviside step function

自变量为0,函数值为0.5
自变量趋于正无穷,函数值趋近于1
自变量趋于负无穷,函数值趋近于0

(为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结果值相加,)将这个总和代入Sigmoid函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据被分入1类,小于0.5即被归入0类。所以, Logistic回归也可以被看成是一种概率估计。

括号内的后面会讲。简单来说Sigmoid做分类器使用,逻辑回归计算出最佳拟合的回归系数。

线性回归的参数或系数

假设结果为若干属性(特征)值的线性组合 z=w0x0+w1x1+...+wnxn
写为向量:
z=wTx(1)

其中的向量x是分类器的输入数据,向量w也就是我们要找到的最佳参数

预测函数

将上两小结内容整合起来,有逻辑回归的预测函数为:
hθ(x)=11+eθT(x) ,其中 θ 是上小节中w的估计值。

Cost函数

损失函数:表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式

损失函数最常见的形式就是 (h(i)y(i))
上标(i)表示第i个样本,而不是指数
风险函数常见形式为:

J(θ)=1mi=1N(hθ(x(i))y(i))2

N是样本数,求θ使得J(θ)最小,这样的θ就是理想的参数,对线性回归来说θ就是理想的回归系数。

但是,对于逻辑回归(及任何二分类问题)来说, hθ(x(i)) 的取值是0或者1,所以J(θ)不是一个凸函数,难以通过简单的手段求极小值。

所以我们必须找一个新的损失函数:

loss(hθ(x(i)),y(i))={ log(hθ(x(i)))when:y(i)=1log(1hθ(x(i)))when:y(i)=0

什么意思呢?y的真实值为1,预测值也为1时,损失为0,但预测值为0时,损失为正无穷;可类推y=0的叙述。

统一成一个式子,在某个样本上的损失函数定义为:

loss(hθ(x(i)),y(i))=[y(i)log(hθ(x(i)))+(1y(i)))log(1hθ

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值