关闭

poj1515Street Directions【无向图->有向图 链式前向星版tarjan求桥】

标签: 双连通分量tarjanpoj
518人阅读 评论(0) 收藏 举报
分类:

纠结半天怎么用原来的模板表示边与序号的关系,map都用上了,还是一塌糊涂,然而,这是图啊……怎么能把链式前向星忘了→_→

具体看注释 ,思路当然和那些都一样

/***********
poj1515
2015.11.20
796K	157MS	G++	2230B
***********/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>

using namespace std;

const int MAXN=1111;

struct Edge
{
    int v,next;
    bool vis;
}edge[MAXN*MAXN];
int n,m,NE;
int head[MAXN];

void Insert(int u,int v)
{
    edge[NE].v=v;
    edge[NE].next=head[u];
    edge[NE].vis=false;
    head[u]=NE++;
}

int cnt,_count;
int low[MAXN],dfn[MAXN],color[MAXN];
bool mark[MAXN];
stack<int>S;
void Tarjan(int u,int father)
{
    int flag=0;
    low[u]=dfn[u]=++cnt;
    mark[u]=true;
    S.push(u);
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].v;
        if(v==father&&!flag)
        {
            flag=1;
            continue;
        }
        if(dfn[v]==0)
        {
            Tarjan(v,u);
            low[u]=min(low[u],low[v]);
        }
        else if(mark[v])
            low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u])
    {
        int v;
        _count++;
        do{
            v=S.top();
            S.pop();
            mark[v]=false;
            color[v]=_count;//标记每个点所在的集合序号
        }while(u!=v);
    }
}
void Solve(int u,int father)
{
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].v;
        if(v==father) continue;
        if(color[u]==color[v]&&!edge[i].vis)
            printf("%d %d\n",u,v);//因为在同一个连通分量中 双向的边输出一个方向的就好
        else if(color[u]!=color[v]&&!edge[i].vis)
        {
            printf("%d %d\n",u,v);
            printf("%d %d\n",v,u);//因为是桥 所以输出双向的
        }
        edge[i].vis=true;
        edge[i^1].vis=true;//不管是输出了单向的还是双向的 这条边都结束了
        if(!mark[v])
        {
            mark[v]=true;
            Solve(v,u);
        }
    }
}
int main()
{
   // freopen("cin.txt","r",stdin);
    int u,v,t=1;
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0&&m==0) break;
        NE=0;
        memset(head,-1,sizeof(head));
        while(m--)
        {
            scanf("%d%d",&u,&v);
            Insert(u,v);
            Insert(v,u);

        }
        cnt=_count=0;
        memset(dfn,0,sizeof(dfn));
        memset(mark,false,sizeof(mark));
        Tarjan(1,-1);
        printf("%d\n\n",t++);
        memset(mark,false,sizeof(mark));
        mark[1]=true;
        Solve(1,-1);
        puts("#");
    }
    return 0;
}




0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

图的存储结构三部曲 ——其一:前向星

前向星也是一种通过存储边的信息的方式存储图的数据结构。它的
  • u013573047
  • u013573047
  • 2014-04-04 21:27
  • 1596

NYOJ 115 城市平乱 【无向图 + 链式前向星 + SPFA】

城市平乱 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 南将军统领着N个部队,这N个部队分别驻扎在N个不同的城市。 他在用这N个部...
  • u013806814
  • u013806814
  • 2014-12-07 02:47
  • 992

无向图和有向图的tarjan

// 有向图tarjan void tarjan(int u) { int j,v; dfn[u]=low[u]=cnt++; vis[u]=1; ...
  • u010126535
  • u010126535
  • 2014-09-23 22:18
  • 301

hdu2544 最短路之spfa算法+链式前向星建图

http://acm.hdu.edu.cn/showproblem.php?pid=2544
  • u013573047
  • u013573047
  • 2014-04-06 17:15
  • 1071

深度理解链式前向星

我们首先来看一下什么是前向星. 前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和...
  • ACdreamers
  • ACdreamers
  • 2013-11-23 16:55
  • 22909

图的存储方式

Problem Description 解决图论问题,首先就要思考用什么样的方式存储图。但是小鑫却怎么也弄不明白如何存图才能有利于解决问题。你能帮他解决这个问题么? Input  多组输...
  • shadowam
  • shadowam
  • 2017-02-21 17:07
  • 101

在数学上,一个图(Graph)是表示物件与物件之间的关系的方法,是图论的基本研究对象。一个图看起来是由一些小圆点(称为顶点或结点)和连结这些圆点的直线或曲线(称为边)组成的。 目...
  • u012116229
  • u012116229
  • 2015-03-12 09:23
  • 355

[HDU 2544] 最短路 spfa写法 + 链式前向星

spfa是对迪杰斯特拉算法的队列优化,套路大概就是: 让dis[1] 入队, 然后判断队列是否为空; 让它赋给队首, 然后就是一样的循环; 唯一的区别就是这个地方!vis[i] 是拆开放在后面的; ...
  • qq_33638791
  • qq_33638791
  • 2016-05-11 10:43
  • 317

HDU1874 畅通工程续 【链式前向星】+【Dijkstra】

畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su...
  • u012846486
  • u012846486
  • 2014-07-27 15:37
  • 1202
    碎碎念
    周小姐,你还想毕业找不到工作吗????
    个人资料
    • 访问:264335次
    • 积分:8616
    • 等级:
    • 排名:第2640名
    • 原创:606篇
    • 转载:25篇
    • 译文:0篇
    • 评论:38条
    友情链接