分组背包问题:不超过N元钱

原创 2016年08月29日 16:52:52

https://nanti.jisuanke.com/t/256

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子: 主件 附件 电脑 打印机,扫描仪 书柜 图书 书桌 台灯,文具 工作椅 无 如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。 设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为: v[j1]*w[j1]+v[j2]*w[j2]+  …+v[jk]*w[jk]。(其中*为乘号) 请你帮助金明设计一个满足要求的购物单。

输入格式:输入的第1行为两个正整数,用一个空格隔开: N  m (其中N(< 32000)表示总钱数,m(< 60)为希望购买物品的个数。) 从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数 v  p  q (其中v表示该物品的价格(v< 10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q> 0,表示该物品为附件,q是所属主件的编号)

输出格式:输出一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(< 200000)。

样例输入

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

样例输出

2200
先设置一个结构体存放每一件物品的信息:价格、重要度、主id、附件id1、附件id2(如果是主件,即主id=0,则附件id无意义,设为0)

struct Item
{
	int cost;
	int impo;
	int mid;
	int plu1 = 0;
	int plu2 = 0;
};


对于每一个主件,一共有4种选择:

1、只购买主件,花费为a[i].cost

2、购买主件和附件1,花费为a[i].cost+a[a[i].plu1].cost

3、购买主件和附件2,花费为a[i].cost+a[a[i].plu2].cost

4、购买主件和附件1、2,花费为a[i].cost+a[a[i].plu1].cost+a[a[i].plu2].cost

针对每一种情况考虑类似于01背包问题的解法,写出如下题解:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct Item
{
	int cost;
	int impo;
	int mid;
	int plu1 = 0;
	int plu2 = 0;
};

int main()
{
	int i, j, n, m, id, p1, p2, cost, p1cost, p2cost, val, p1val, p2val;
	cin >> n >> m;
	vector<Item> a(m + 1);
	vector<int> dp(n + 1, 0);
	//处理输入
	for (i = 1; i <= m; ++i)
	{
		cin >> a[i].cost >> a[i].impo >> a[i].mid;
		id = a[i].mid;
		if (id > 0)
		{
			a[id].plu2 = a[id].plu1;
			a[id].plu1 = i;
		}
	}
	for (i = 1; i <= m; ++i)
	{
		cost = a[i].cost;
		val = a[i].impo*cost;

		for (j = n; j >= cost; --j)
		{
			if (a[i].mid > 0)
				break;
			
			//附件信息
			p1 = a[i].plu1;
			p1cost = a[p1].cost;
			p1val = p1cost*a[p1].impo;
			p2 = a[i].plu2;
			p2cost = a[p2].cost;
			p2val = p2cost*a[p2].impo;

			//主件
			dp[j] = max(dp[j], dp[j - cost] + val);
			
			//附件1
			if (p1 > 0 && j - cost - p1cost >= 0)
				dp[j] = max(dp[j], dp[j - cost - p1cost] + val + p1val);

			//附件2
			if (p2 > 0 && j - cost - p2cost >= 0)
				dp[j] = max(dp[j], dp[j - cost - p2cost] + val + p2val);

			//附件1+2
			if (p1*p2 > 0 && j - cost - p1cost - p2cost >= 0)
				dp[j] = max(dp[j], dp[j - cost - p1cost - p2cost] + val + p1val + p2val);
		}
	}
	cout << dp[n] << endl;
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

hdu 3033 I love sneakers! 分组背包问题

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3033 题目大意是:有n双鞋,分别属于k个品牌,然后有m的钱,每双鞋均有一个花费和价值,问用m的钱可以...

分组背包问题解法

前面的博客中提到了0/1背包问题,下面说明一种更加复杂的动态规划问题——分组背包。 一个容量为V的背包和有N(0,1,2……i……N)件物品。第i件物品的费用是c[i],价值是w[i]。这些物品被划...

HDU 2191汶川大地震(分组背包问题)

悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja...

HDU-1712 ACBoy needs your help (分组背包问题)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1712 题目: ACboy needs your help Time Limit: 100...

【51nod1086】【背包问题 V2】【动态规划】【二进制分组】

题目大意有N种物品,每种物品的数量为C1,C2……Cn。从中任选若干件放在容量为W的背包里,每种物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包...

HDU 1712 分组背包问题

题目信息: ACboy needs your help Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

HHOJ 多重部分和问题(分组背包问题)

1149: 多重部分和问题 时间限制: 1 Sec  内存限制: 128 MB 提交: 160  解决: 88 题目描述 有n中不同大小的数字ai,每种各mi个。判断是否可以从这些数字之中选出若干...

算法导论-16.2-6 在O(n)时间内求解分数背包问题

题目: 说明如何在O(n)时间内解决分数背包问题 常规算法: 先求avgi = vi/wi,按照avgi从大到小排序,再贪心选择,时间复杂度为O(nlgn) 改进: 更一...

分组背包问题Matlab实现——之基本背包扩展贪心解法

2016年7月28日星期四 T.s.road总结笔记:分组背包问题Matlab实现——之基本背包扩展贪心解法 项目源码:https://github.com/Tsroad/KnapsackProb...
  • tsroad
  • tsroad
  • 2016-07-28 11:16
  • 1025
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)